### W. EDWARD BALMER SCHOOL

### SCHOOL BUILDING COMMITTEE MEETIN

NORTHBRIDGE, MA

CHEMATIC DESIGN







Massachusetts School Building Authority Funding Affordable, Sustainable, and Efficient Schools in Partnership with Local Communities



**APRIL 3, 2018** 

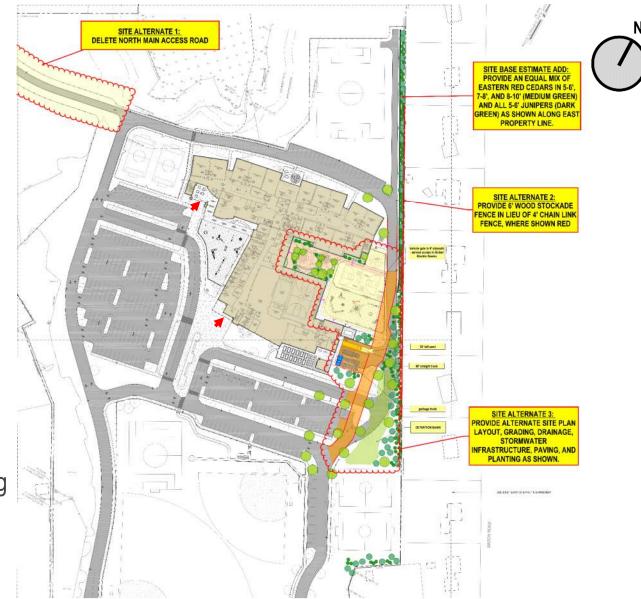
agenda

- **1. SITE PLANNING UPDATE**
- 2. BUILDING DESIGN UPDATE
- 3. PRELIMINARY SD ENERGY MODEL AND OPERATING COSTS
- 4. SUSTAINABLE DESIGN FEATURES
- 5. QUESTIONS, COMMENTS, FEEDBACK

### SITE PLANNING UPDATE

### SITE FEATURES

- 1. Grade 3-5 playground
- 2. Informal garden
- 3. Outdoor Classroom
- 4. Outdoor learning space
- 5. Stormwater retention
- 6. Nature Trail (future)
- 7. Covered portico
- 8. PK-2 Playground
- 9. Entry Plaza
- 10. Children's Gardens
- 11. Service Yard






### SITE ALTERNATES

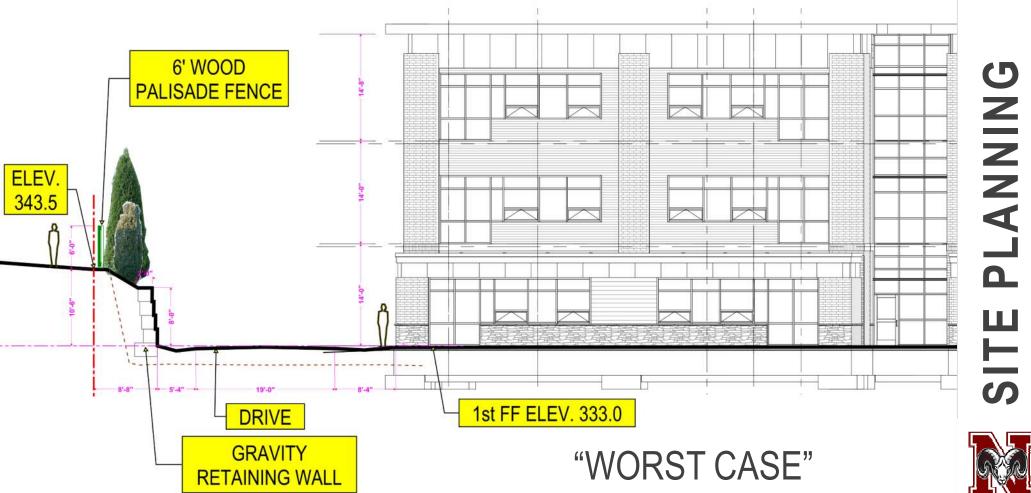
- 1. Delete north main access road
- Provide 6' wood stockade fence in lieu of 4' black chain link fence.
- 3. Provide alternate site plan road layout as shown.

Base estimate clarification – include dense plantings along east property line



SITE PLANNING

#### Ν SITE ALTERNATE 2: **PROVIDE 6' WOOD STOCKADE** FENCE IN LIEU OF 4' CHAIN LINK FENCE, WHERE SHOWN RED Vehicle gate to 9' sidewalk - service access to Boiler Electric Rooms 53' full semi 40' straight truck garbage truck SITE ALTERNATE 3: **PROVIDE ALTERNATE SITE PLAN** DETENTION BASIN LAYOUT, GRADING, DRAINAGE, **ALTERNATES** STORMWATER **INFRASTRUCTURE, PAVING, AND** PLANTING AS SHOWN.


SITE

(Detail)

PLANNING SITE



#### **EAST PROPERTY LINE – SITE SECTION**



### BUILDING DESIGN: EXTERIOR IMAGERY

### **DESIGN THEMES**:

- Historical references to larger-scale Northbridge buildings
  "WOVEN"
- Spirit of 21<sup>st</sup> Century Arts and Technology emerging from the structure of the old: Heavy Structure with Lightweight Infill



#### VIEW FROM SOUTHWEST SITE ENTRANCE



### AERIAL VIEW FROM SOUTHWEST



### ENTRY VIEW FROM SOUTHWEST



#### ENTRY VIEW FROM WEST PARKING LOT



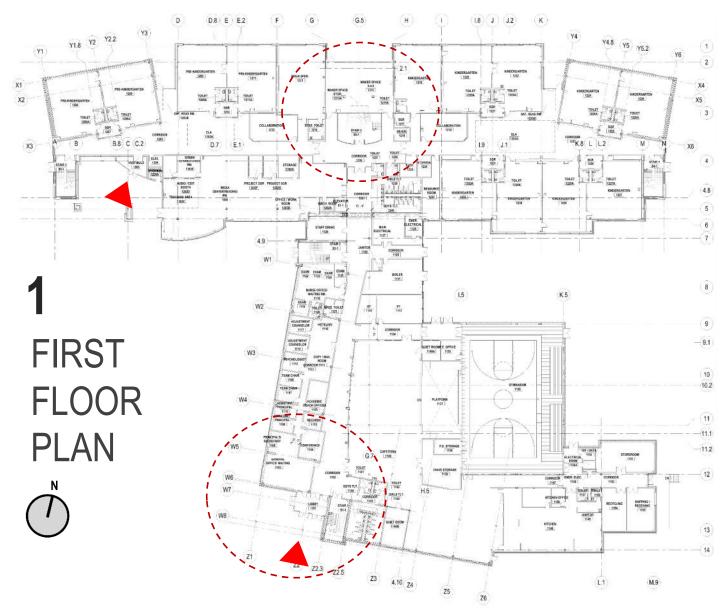
#### VIEW OF EARLY EDUCATION ENTRANCE



### VIEW OF MAKER SPACE – NORTH FACADE



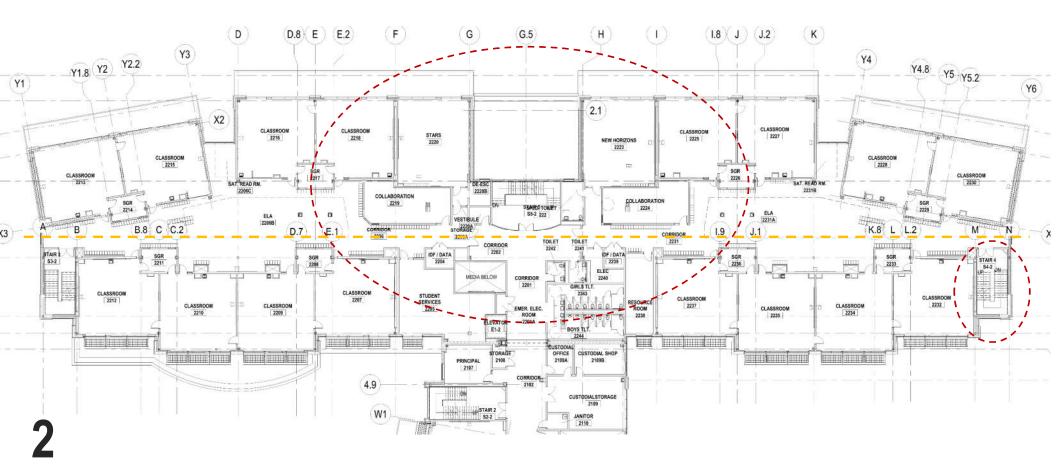
#### VIEW OF NORTH FACADE




### AERIAL VIEW OF COURTYARD - EAST

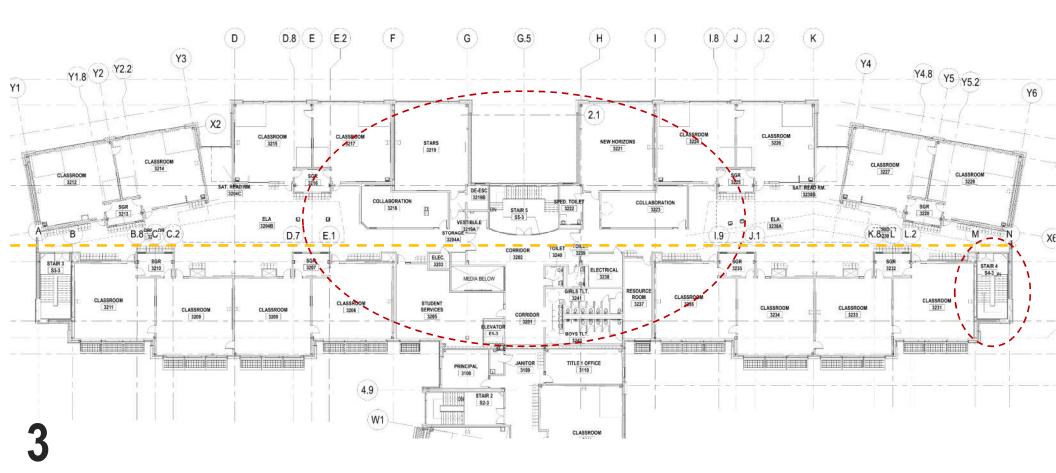


#### AERIAL VIEW FROM SOUTHEAST


## **BUILDING DESIGN:** PLAN UPDATES



- Central Stair 5 adjustments
- Entry vestibule right-sized
- Entry canopy columns placed
- Continued nip and tuck to conform to program GSF




- Central Stair 5 adjustments
- Flipped circulation for STARS and New Horizons spaces – now within grade-level communities
- Continued nip and tuck to conform to program GSF
   – 8" slice out of north wing
- Stairs 3 and 4 grew by inches

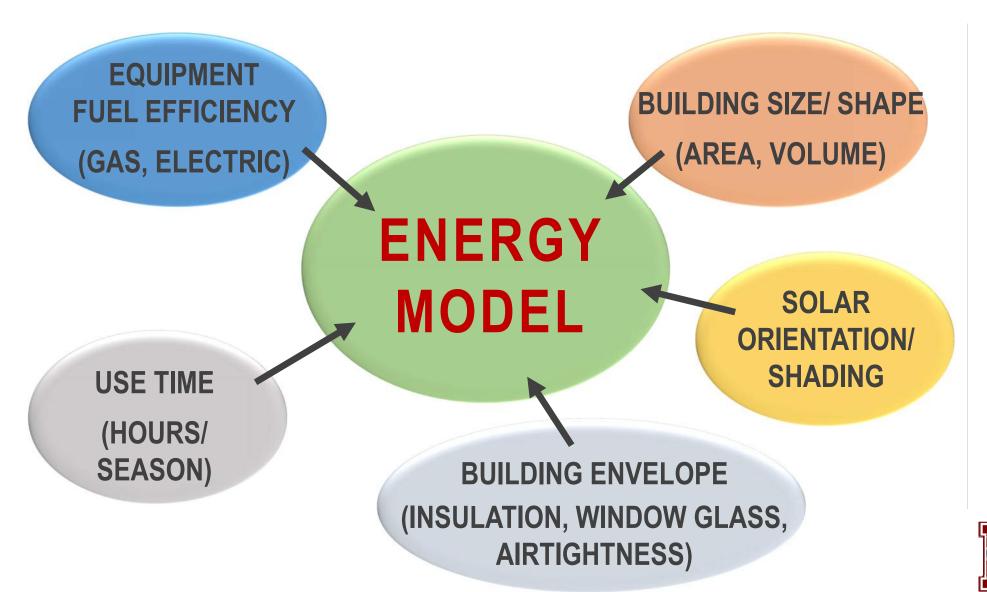


### SECOND FLOOR PLAN - DETAIL

 $\bigwedge^{\mathbb{N}}$ 



### THIRD FLOOR PLAN - DETAIL


^

# B PRELIMINARY SD ENERGY MODEL AND OPERATING COSTS



GARCIA • GALUSKA • DESOUSA Consulting Engineers Inc.

370 Faunce Comer Road, Dartmouth, MA 02747-1217



### EUI ~ MPG ENERGY USE INTENSITY (kBTU/ square foot)

- Total Energy Used / Building Area
- An approximate way to compare building efficiency or performance

| 80                 |                 |      |        |      | •           | -      |                  |      |                    |             |
|--------------------|-----------------|------|--------|------|-------------|--------|------------------|------|--------------------|-------------|
| 70                 |                 | 70.6 |        |      |             |        |                  |      | ER ES<br>Safety    | <b>D</b> NI |
| <sub>60</sub> 62.1 |                 |      | NES    |      |             |        | ER ES            |      | BALMER<br>/ 30% Sa | DEL         |
| 50                 | STING<br>atabs) |      | AND    | 50.8 |             |        | BALMER<br>ODELED | 18 5 | N E W<br>S D W     | 0<br>W      |
| -40                | EXI<br>ed. D    |      | LMER   |      | E<br>N<br>N | - 37 3 | N E W I          | 40.5 |                    | RGY         |
| 30                 | GE OF<br>LS (Fe |      | ING BA |      | ASEL        | 57.5   |                  |      |                    | U<br>N<br>E |
| 20                 | VERA<br>CHOO    |      | XIST   |      | EED B       |        |                  |      |                    |             |
|                    | S A             |      | шС     |      | <b></b>     |        |                  |      |                    |             |

### **ENERGY USE INTENSITY (kBTU/SF) COMPARISON**

00

### LCCA

### LIFE CYCLE COST ANALYSIS

30-Year Study Duration/Payback Horizon

Looks at:

- Initial Capital Investment
- Annual Fuel Costs (Gas & Electric)
- Annual Maintenance Costs

To determine:

- Total Life-Cycle Savings (or Cost)
- Payback Period (Years)

### **GROSS CAPITAL INVESTMENT (\$) COMPARISON**

| ψυισινί |                  | Z               |                 |                       |         |
|---------|------------------|-----------------|-----------------|-----------------------|---------|
| \$7.6M  | \$7.7M           | MID.<br>LATION  |                 |                       | 5<br>NG |
| \$7.3M  | Htg              |                 | \$7.2M          | \$7.4M                | DEL     |
| \$7.0M  | SYST<br>WH/I     | VAV<br>ENT      | S T C           | r-Cool<br>nits        | 0<br>W  |
| \$6.6M  | SELINE<br>DX Coo | ON 1 -<br>LACEM | ULL A/<br>NT VE | VRF/ Air-<br>Evap Uni | RGY     |
| \$6.3M  | E BA<br>U w/     | \$6.3M          | ACEME           | 3-<br>ser/            | ENE     |
| \$6.0M  | ASHRA<br>VAV RT  |                 | PTI0<br>ISPL/   | PTIO<br>onde          |         |
|         | < >              |                 | 00              | 00                    |         |

| \$240k |                    |                |                   |                                |               |                  |          |
|--------|--------------------|----------------|-------------------|--------------------------------|---------------|------------------|----------|
|        |                    |                |                   |                                | <b>\$234k</b> |                  | C        |
| \$227k | VAV                | Z              |                   |                                |               | -                | - 2      |
| \$213k | N N                | ID.<br>ATIO    |                   |                                |               |                  | MODELING |
| \$200k | SYST<br>Htg        | EHUM           | <u>\$195k</u>     | A/C<br>VENT.                   |               | r-Cool<br>nits   |          |
| \$187k | ASELINE<br>Cool/HW | \$187k         | <del>\$133K</del> | FULL A                         |               | KF/ Air<br>vap U | ENERGY   |
| \$173k | E BASE<br>DX Coo   | N 1 - ACEM     |                   | 2-<br>CE                       |               | 3- V<br>ser/ I   | ENE      |
| \$160k | ASHRAI<br>RTU w/   | OPTIO<br>DISPL |                   | <b>OPTION</b><br><b>DISPLA</b> |               | OPTION<br>Conden |          |

### COMBINED ANNUAL EXPENSE (\$) COMPARISON

| \$3.0M  | TOTAL LIFE CYC  | LE S           | AVINGS (\$) C | OMPARISON       |             |
|---------|-----------------|----------------|---------------|-----------------|-------------|
| ψοισιάι | \$2.73N         |                |               |                 | C           |
| \$2.5M  | NAV             | z              |               | 0 0             | N           |
| \$2.0M  | E S D           | ATIOI          |               | Air-Co<br>Units | DEL         |
| \$1.5M  | NE SY<br>HW Ht  | DEHUN          | \$1.57M       | VRF/<br>/ Evap  | 0<br>W      |
| \$1.0M  | ASELI<br>Cool/A | VAV<br>ENT     | FULL          | ON 3-<br>enser  | RGY         |
| \$0.5M  | AE B/<br>w/ DX  | DN 1 -<br>ACEM | DN 2-         | \$0.58M         | Ш<br>Z<br>Ш |
| \$0     | \$0 SHR         | OPTI(<br>DISPI | OPTIC         |                 |             |




- Lowest Initial Capital Investment
- Lowest Annual Fuel Costs
- Tied for Lowest Annual Maintenance Cost
- Highest Life-Cycle Savings
- "Instant" Payback on Investment

- Low environmental footprint
- Better Indoor Air Quality
- Superior Thermal Comfort
- Good Controllability
- Advanced system without being needlessly complex

### **MODELED ENVELOPE OPTIONS**

- 1. BETTER GLAZING ADD \$212,780
  - SHGC 0.27 IN LIEU OF 0.39
- 2. MORE ROOF INSULATION ADD \$100,360
  - R-40 IN LIEU OF R-34
- Neither option costed out (potential savings exceeded 30-year payback period)
- Neither option changed sizing of mechanical equipment
- Shows that base envelope design is already quite robust
- Point of diminishing returns



Asked at Forum #3

Q.: What is the [modeled] energy cost to operate the new building as compared to the energy cost to operate the existing buildings, Balmer and NES combined?

A.: See below....

### EXISTING VERSUS NEW BUILDING: ANNUAL OPERATING COST COMPARISON

| BUILDING                         | AREA (GSF)  | COMBINED<br>UTILITY COST<br>(GAS +<br>ELECTRIC) | ESTIMATED<br>EXPENSE<br>INCREASE<br>(Delta) | ESTIMATED<br>ANNUAL<br>MAINT. COST |
|----------------------------------|-------------|-------------------------------------------------|---------------------------------------------|------------------------------------|
| EXISTING<br>BALMER<br>+ NES      | 128,431 GSF | \$130,870                                       | -                                           | \$31,100                           |
| PROPOSED<br>(DESIGN)<br>BUILDING | 167,352 GSF | \$197,323                                       | \$66,453                                    | \$37,000                           |



### SUSTAINABLE DESIGN FEATURES UPDATE

### LEED EAc3 – OPTIMIZE ENERGY PERFORMANCE

- Modeled Building shows a 33.2% energy savings, compared with Baseline Building
- MSBA minimum is 16% savings
- Translates to 13 points we were targeting 11
- Conservative Approach keep 11 in YES column, 2 in Maybe column

### CURRENT LEED STATUS

### **Project Totals (Certification Estimates)**

110

Certified: 40-49 points, Silver: 50-59 points, Gold: 60-79 points, Platinum: 80+ points

| Project Goal(s)                         | LEED v4 BD+C NC Silver minimum                                                                                                                                                                            |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activity Over the 2<br>Last Months      | Reviewed MSBA Preferred Schematic Report. Participated in SD Phase<br>Consultants Kickoff Meeting on January 17, 2018. Updated LEED-S v4<br>Scorecard based on additional project data and after meeting. |
| Planned Activity<br>Over the Next Month | Work with team to identify LEED credit documentation responsibilities.<br>Facilitate team to complete LEED Integrative Process and Site Assessment<br>worksheets and OPR document.                        |



| - | Yes |   | No |      |                                             |
|---|-----|---|----|------|---------------------------------------------|
|   | 1   | 0 | 0  |      | Integrative Process                         |
| D | 1   |   |    | IPc1 | Integrative Process                         |
| _ | Yes |   | No |      |                                             |
|   | 0   | 3 | 12 |      | Location & Transportation                   |
| D |     |   |    | LTc1 | LEED for Neighborhood Development Location  |
| D |     |   | 1  | LTc2 | Sensitive Land Protection                   |
| D |     |   | 2  | LTc3 | High Priority Site                          |
| D |     |   | 5  | LTc4 | Surrounding Density and Diverse Uses (RP@4) |
| D |     |   | 4  | LTc5 | Access to Quality Transit                   |
| D |     | 1 |    | LTc6 | Bicycle Facilities                          |
| D |     | 1 |    | LTc7 | Reduced Parking Footprint                   |
| D |     | 1 |    | LTc8 | Green Vehicles                              |



|   | Yes |   | No |      |                                               |
|---|-----|---|----|------|-----------------------------------------------|
|   | 4   | 4 | 4  |      | Sustainable Sites                             |
| С | Y   |   |    | SSp1 | Construction Activity Pollution Prevention    |
| D | Υ   |   |    | SSp2 | Environmental Site Assessment                 |
| D | 1   |   |    | SSc1 | Site Assessment                               |
| D |     | 2 |    | SSc2 | Site Development - Protect or Restore Habitat |
| D | 1   |   |    | SSc3 | Open Space                                    |
| D |     |   | 3  | SSc4 | Rainwater Management                          |
| D |     | 2 |    | SSc5 | Heat Island Reduction                         |
| D | 1   |   |    | SSc6 | Light Pollution Reduction                     |
| D |     |   | 1  | SSc7 | Site Master Plan                              |
| D | 1   |   |    | SSc8 | Joint Use of Facilities                       |



|   | Yes |   | No |      |                                                             |
|---|-----|---|----|------|-------------------------------------------------------------|
|   | 5   | 1 | 6  |      | Water Efficiency                                            |
| D | Υ   |   |    | WEp1 | Outdoor Water Use Reduction, 30%                            |
| D | Y   |   |    | WEp2 | Indoor Water Use Reduction, 20%                             |
| D | Υ   |   |    | WEp3 | Building-level Water Metering                               |
| D | 2   |   |    | WEc1 | Outdoor Water Use Reduction                                 |
| D | 2   | 1 | 4  | WEc2 | Indoor Water Use Reduction 1 (25%), 2 (30%),3 (35%),4 (40%) |
| D |     |   | 2  | WEc3 | Cooling Tower Water Use                                     |
| D | 1   |   |    | WEc4 | Water Metering                                              |



|   | res |   | INO |      |                                            |                                       |  |  |  |  |
|---|-----|---|-----|------|--------------------------------------------|---------------------------------------|--|--|--|--|
|   | 16  | 9 | 6   |      | En                                         | ergy & Atmosphere                     |  |  |  |  |
| С | Υ   |   |     | EAp1 | Fundamental Commissioning and Verification |                                       |  |  |  |  |
| D | Y   |   |     | EAp2 | Min                                        | imum Energy Performance               |  |  |  |  |
| D | Y   |   |     | EAp3 | Bui                                        | Building-level Energy Metering        |  |  |  |  |
| D | Y   |   |     | EAp4 | Fur                                        | ndamental Refrigerant Management      |  |  |  |  |
| С | 5   | 1 |     | EAc1 | Enł                                        | nanced Commissioning                  |  |  |  |  |
| D | 11  | 3 | 2   | EAc2 | <u>Opt</u>                                 | timize Energy Performance (RP@8)      |  |  |  |  |
|   |     |   |     |      | Υ                                          | 10% Improvement in Energy Performance |  |  |  |  |
|   |     |   |     |      | Υ                                          | 20% Improvement in Energy Performance |  |  |  |  |
|   |     |   |     |      | Υ                                          | 24% Improvement in Energy Performance |  |  |  |  |
|   |     |   |     |      | Y                                          | 26% Improvement in Energy Performance |  |  |  |  |



|   | Yes |   | No |      |                                                            |
|---|-----|---|----|------|------------------------------------------------------------|
|   | 16  | 9 | 6  |      | Energy & Atmosphere                                        |
| D |     | 1 |    | EAc3 | Advanced Energy Metering                                   |
| С |     |   | 2  | EAc4 | Demand Response                                            |
| D |     | 3 |    | EAc5 | Renewable Energy Production 1 (1%), <u>2 (5%)</u> ,3 (10%) |
| D |     | 1 |    | EAc6 | Enhanced Refrigerant Management                            |
| С |     | 2 |    | EAc7 | Green Power and Carbon Offsets                             |
|   |     |   |    |      | M+ 50% Total Energy by RECs &/or Offsets                   |
|   |     |   |    |      | M+ 100% Total Energy by RECs &/or Offsets                  |



|   | Yes |   | No |      |                                                                                    |
|---|-----|---|----|------|------------------------------------------------------------------------------------|
|   | 4   | 4 | 5  |      | Materials & Resources                                                              |
| D | Y   |   |    | MRp1 | Storage & Collection of Recyclables                                                |
| С | Y   |   |    | MRp2 | Construction and Demolition Waste Management Planning                              |
| С |     | 3 | 2  | MRc1 | Building Life-Cycle Impact Reduction (RP@2)                                        |
| С | 1   |   | 1  | MRc2 | Building Product Disclosure & Optimization -<br>Environmental Product Declarations |
| С | 1   |   | 1  | MRc3 | Building Product Disclosure & Optimization -<br>Sourcing of Raw Materials          |
| С | 1   |   | 1  | MRc4 | Building Product Disclosure and Optimization - Material Ingredients                |
| С | 1   | 1 |    | MRc5 | Construction and Demolition Waste Management                                       |



|   | res |   | INO |       |                                                 |
|---|-----|---|-----|-------|-------------------------------------------------|
|   | 8   | 7 | 1   |       | Indoor Environmental Quality                    |
| D | Υ   |   |     | IEQp1 | Minimum IAQ Performance                         |
| D | Υ   |   |     | IEQp2 | Environmental Tobacco Smoke (ETS) Control       |
| D | Υ   |   |     | IEQp3 | Minimum Acoustical Performance                  |
| D | 2   |   |     | IEQc1 | Enhanced IAQ Strategies                         |
| С | 1   | 2 |     | IEQc2 | Low-Emitting Materials                          |
|   |     |   |     |       | Y Three of seven categories (or 4 w/ furniture) |

- M Five of seven categories (or 6 w/ furniture)
- M Six of seven categories (or 7 w/ furniture)

| С | 1 |   |   | IEQc3 | Construction IAQ Management Plan |
|---|---|---|---|-------|----------------------------------|
| С | 2 |   |   | IEQc4 | IAQ Assessment                   |
| D |   | 1 |   | IEQc5 | Thermal Comfort                  |
| D | 1 | 1 |   | IEQc6 | Interior Lighting                |
| D |   | 3 |   | IEQc7 | Daylight                         |
| D | 1 |   |   | IEQc8 | Quality Views                    |
| D |   |   | 1 | IEQc9 | Acoustic Performance             |



|   | 5   | 1 | 0  |      | Innovation                                                   |
|---|-----|---|----|------|--------------------------------------------------------------|
| D | 1   |   |    | IDc1 | Innovation in Design: To be determined (EB:O&M Starter Kit?) |
| D | 1   |   |    | IDc2 | Innovation in Design: TBD (Green Building Education?)        |
| D | 1   |   |    | IDc3 | Innovation in Design: TBD                                    |
| С |     | 1 |    | IDc4 | Innovation in Design: TBD                                    |
| С | 1   |   |    | IDc5 | Innovation in Design: TBD (Pilot Credit)                     |
| С | 1   |   |    | IDc6 | LEED Accredited Professional                                 |
|   | Yes |   | No |      |                                                              |
|   | 2   | 2 | 0  |      | Regional Priority for 01588 (credits have been underlined)   |
|   | 1   |   |    | RPc1 | LTc3, LTc4, WEc1, EAc2, EAc5, MRc1                           |
|   | 1   |   |    | RPc2 | LTc3, LTc4, WEc1, <b>EAc2</b> , EAc5, MRc1                   |
|   |     | 1 |    | RPc3 | LTc3, LTc4, WEc1, EAc2, <b>EAc5</b> , MRc1                   |
|   |     | 1 |    | RPc4 | LTc3, LTc4, WEc1, EAc2, EAc5, <b>MRc1</b>                    |



Thank you for your attention! Questions? Comments?