NEW W. EDWARD BALMER ELEMENTARY SCHOOL

TOWN OF NORTHBRIDGE, MASSACHUSETTS

PLANNING BOARD SUBMISSION April 9, 2019

260 Merrimac St. Bldg. 7, $2^{\text {nd }}$ Floor Newburyport, Massachusetts 01950

Phone: 978-499-2999

Project Management
1000 Massachusetts Avenue
Cambridge, Massachusetts 02138
Phone: 617.547.5400
www.smma.com

212 Battery Street
Burlington, Vermont 05401
Phone: 802.863.1428
www.doreandwhittier.com

Mr. R. Gary Bechtholdt II, Town Planner
Town of Northbridge
Aldrich School Town Hall Annex
14 Hill Street
Whitinsville, MA 01588

RE: W. Edward Balmer Elementary School - Planning Board Submission

Dear Gary,

Please accept this submission to the Planning Board for the New Balmer Elementary School project, attached and delivered on this date. The project includes construction of a new Grades PK-5 elementary school on the site of the existing Balmer school, which will also involve the Vail Field parcel as part of the project.

We have attached our previously submitted Zoning Bylaws analysis, which provides some relevant information for the Planning Board. In addition, we have isolated some items of information requested in the Bylaws section 17349.1.E submission requirements that may not be included or easily inferred from the attached drawings, as follows:
(2)(e) The proposed school building is 167,352 gross square feet (GSF) in size.
(2)(h) The School Building Committee has proposed an electronic programmable LED sign at the front entrance of the school. It is intended to be mounted on (or recessed within) the masonry gateway shown on the site plan. A conceptual elevation drawing is attached. We are aware of the sign ordinance in the residential district, but would submit that a 12 SF internally lit, non-animated, white LED sign communicating activities and upcoming events at the school is both reasonable and essential for the school's function, and would not place an undue burden on neighbors.
(2)(k) Estimated earthwork is as follows:

Phase I (New Building Construction) Bulk Grade Cut: 21,850 CY; Bulk Grade Fill: 14,000 CY.
Phase II (West Parking Lot Construction) Bulk Grade Cut: 8,650 CY; Bulk Grade Fill: 1,420 CY.
(2)(p)[1] Traffic Impact Report, by Nitsch Engineering, dated January 26, 2018, attached. The report body is included; however, the appendix of some 163 pages containing the raw traffic count data is not, but is available upon request.

For the remainder of $(2)(p)[2-4]$ we would submit that these items are either covered under the Conservation Commission application or not germane to this public building project and should be waived for this application.

ARCHITECTS

PROJECT MANAGERS
260 Merrimac Street Bldg 7
Newburyport, MA 01950
978.499.2999 ph
978.499.2944 fax

212 Battery Street
Burlington, VT 05401
802.863 .1428 ph
802.863.6955

Mr. Gary Bechtholdt, Town Planner
BALMER - Planning Submission
April 9, 2019
Page 2 of 2
Please contact me if you have any question on the above material, or require anything further. We look forward to working with you to continue the permitting process for this project.

Sincerely,
DORE \& WHITTIER ARCHITECTS, INC.
Architects - Project Managers

Tom Hengelsberg, AIA
Project Manager
Attachments
cc: File

Table of Contents

Cover Letter
Table of Contents 1.0
Site Plan Review Application Form 2.0
Form C-4 - Certified List of Abutters 3.0
Zoning Analysis Letter 4.0
Exterior 3-D Renderings with Materials \& Colors 5.0
Signage Detail 6.0
Exterior Lighting Fixture Cut Sheets 7.0
Traffic Impact Report 8.0Att.

SITE PLAN REVIEW

April 9, 2019
Applicant: Dore \& Whittier Architects, Inc.
Address: $\quad 260$ Merrimac Street, Building 7, Newburyport, MA 01950

To the Planning Board of the Town of Northbridge

The undersigned, being the applicant for approval of a site plan shown on a plan entitled: "Planning Board Submission Package for the New W. Edward Balmer School" designed by Dore \& Whittier Architects/ Nitsch Engineering/ Horiuchi \& Solien Landscape Architects \qquad , dated April 9,2019 and described as follows:

A plan showing \qquad
Civil Engineering: Demolition Plans, Roadway Layout Plans, Road Signage and Striping Plans, Building Location Plans, Site Grading Plans, Site Utility Plans, Site Drainage Plans, Selected Civil Engineering Profiles and Details.

Landscape Architecture: Overall Site Plan, Layout and Materials Plan and Enlargements, Planting Plans, Landscape Details.

Architectural: Building Elevations with materials called out, Colored 3-D Renderings, Signage Details
Electrical Engineering: Electrical Site Plan \& Details, Exterior Lighting Fixture Cut Sheets

Location: \qquad
Total acreage of tract: 30.08 acres (+-)
Total square footage of gross floor area proposed: \qquad
The project is a new structure or group of structures: Not Applicable $\underline{\mathbf{X} \quad \text { Yes }}$ \qquad No

This project is an improvement, alteration, or addition to existing structures \qquad Yes

X \qquad No

Not Applicable

Said applicant hereby submits said site plan in accordance with the Northbridge Zoning By-law Article X $\S 173-49.1$ for approval of said site plan.

The undersigned's title to said land is derived from _ Whitin Machine Works
by deed dated \qquad April 24, 1963 \qquad and recorded in the \qquad Worcester South \qquad
County District Registry of Deeds Book \qquad 4369 Page 342 , registered in the \qquad
\qquad County Registry District of the Land Court, Certificate of Title No. \qquad

Applicant's Address: Dore \& Whittier Architects, Tme., 260 Merrimac Street, Building 7, Newburyport, MA 01950
Applicant's Telephone:
\qquad Date: 4.9.2019
Owner's Signature:
Owner's Address: : Town of Northbridge (for Northbridge Public Schools), 7. Main Street, Whitinsville, MA 01588

Owner's Telephone: \qquad (NPS - 508-234-8156)

Applicant's Authorization if not the owner: \qquad

Received by the Town Clerk:

Date: \qquad
Time: \qquad
Signature: \qquad
\qquad

Instructions

The abutters list shall be prepared by the applicant and submitted to the assessor's office for certification.
Attach a copy or sketch of the most current assessor's plat showing the land described in this petition and the abutting parcels within three hundred feet ($\mathbf{3 0 0}^{\boldsymbol{\prime}}$). Each parcel shall be numbered in accordance with the assessor's records.

Attach the completed list of the owners, from the most recent tax list, of each abutting parcel within three hundred feet ($\mathbf{3 0 0}$ ') of a property line of the proposed subdivision.

Plan Identification

Project Name: New W. Edward Balmer Elementary School
Address of Project: $\quad 21$ Crescent Street, Whitinsville, MA 01588

Applicant: \qquad
\qquad
Address: \qquad
Telephone: \qquad

Owner: Town of Northbridge (for Northbridge Public Schools)
Address: 7 Main Street, Whitinsville, MA 01588
Telephone: $\quad 508-234-2095$ (NPS - 508-234-8156)

This is to certify that at the time of the last assessment for taxation made by the Town of Northbridge, the names and addresses of the parties assessed as adjoining owners to the parcel of land shown are written. This list is assumed to be complete to the best of our knowledge and belief.

ABBUTTERS LISTING

NORTHBRIDGE, MA

Map	Block	Lot	Unit	Owner~s Name	Co Owner~s Name	Address	City	ST	Zip	Parcel Location
7	287			AUStin luke C te	Holly l austin te	325 SWIFT RD	whitinsvilile	MA	01588	325 SWIFT RD
7	288			COLLINS RuSSELI D	KAThleen y collins	292 MASON RD	whitinsvilie	MA	01588	292 MASON RD
7	289			Chagnon irrevocable family trust	paul chagnon/denise zecco, trustee	282 MASON RD	whitinsvilie	MA	01588	282 MASON RD
7	290			Craig francine	C/O A PEREZ \& K RIVERA	265 MASON RD	whitinsivile	MA	01588	266 MASON RD
7	291			zANELLA PATRICK T	tara a zanella	254 MASON RD	whitinsvilie	MA	01588	254 MASON RD
7	292			VALIS DAvid 0	LINDA m VALIS	244 MASON RD	whitinsvilie	MA	01588	244 MASON RD
7	293			baris Charles R	CATHERINE F baris	230 MASON RD	whitinsvilie	MA	01588	230 MASON RD
7	294			COURTEMANCHE JOHN	JACQUELINE C COURTEMANCHE	216 MASON RD	whitinsvilie	MA	01588	216 MASON RD
7	295			ARMStrong john a	MARY L Armstrong	PO BOX 172	whitinsvilie	MA	01588	202 MASON RD
7	296			bigness kyle	keri l bigness	192 MASON RD	whitinsville	MA	01588	192 MASON RD
7	297			brooks John leroy		178 MASON RD	whitinsvilie	MA	01588	178 MASON RD
7	298			STOCKWELL EDWARD R SR	MARGARET B STOCKWELI, TE	168 MASON RD	whitinsvilie	MA	01588	168 MASON RD
7	299			kelleher sean D	C/O JEREMY HARRIS/LESLIE R COSGRO	156 MASON RD	whitinsville	MA	01588	156 MASON RD
7	300			Kourey nicholas w	C/O SCOTT \& SAMANTHA MURDOUGH	146 MASON RD	whitinsville	MA	01588	146 MASON RD
7	301			guglielmo kenneth r	maria a guglielmo	138 MASON RD	whitinsville	MA	01588	138 MASON RD
7	302			GAMbon thomas m		130 MASON RD	whitinsivile	MA	01588	130 MASON RD
7	303			SULLIVAN BRIAN J		68 evergreen CR	whitinsvilue	MA	01588	68 evergreen CR
7	304			fortin living trust	dennis $Ј$ \& BARBARA J Fortin, truste	56 evergreen Cr	NORTHBRIDGE	MA	01588	56 evergreen Cr
7	306			hay Craig d	MARY E HAY, te	32 evergreen Cr	whitinsville	MA	01588	32 evergreen cr
7	307			Cahalane Jonathan v	denise e cahalane	20 evergreen cr	whitinsville	MA	01588	20 evergreen Cr
7	308			neweli kenneta s	brenda l neweli	19 evergreen cr	whitinsville	MA	01588	19 evergreen cr
7	309			hawkes charles b	kristine b hawkes	126 EAIRLAWN St	whitinsvilile	MA	01588	126 FAIRLAWN St
7	310			froment kristine A	david ma froment, te	31 evergreen CR	whitinsville	MA	01588	31 evergreen cr
7	311			MALONE MIChael P	MELISSA A MALONE	41 evergreen cr	Whitinsville	MA	01588	41 evergreen cr
7	312			Cogliandro paul d	SUSAN M. COGLIANDRO	53 evergreen cir	whitinsville	MA	01588	53 evergreen cr
7	313			TOWN OF NORTHBRIDGE		N/A	whitinsville	MA	01588	evergreen cr
7	314			PILEGGI MARK \& DAvid pileggi jr. Tr	c/o Pileggi irrevocable trust	65 evergreen CR	whitinsvilue	MA	01588	65 evergreen Cr
7	315			vitagliano robert	elisabeth vitagliano	94 MASON RD	whitinsvilile	MA	01588	94 MASON RD
7	316			pileggi david J JR	Alison pileghi, Te	120 MASON RD	whitinsvilue	MA	01588	120 MASON RD
7	317			dembrowski stephen J	MARIE A DEmbrowski	103 MASON RD	whitinsville	MA	01588	103 MASON RD
7	318			gay bruce c	margaret m gay	80 Dover Dr	whitinsvilue	MA	01588	80 DOVER DR
7	330			DER MUGRDITCHIAN MARK	CYnthia der mugrditchian	75 Dover DR	whitinsville	MA	01588	75 Dover DR
7	331			fleming kevin J	C/O Philip \& SARAH HANNA	89 Dover DR	whitinsville	MA	01588	89 Dover DR
7	332			ROSSELLI ANTHONY J	C/O ANTHONY J ROSSELLI	109 Dover DR	whitinsvilie	MA	01588	109 Dover DR
7	333			CRAWFORD RYAN	CARRIE CRAWFORD, te	115 MASON RD	whitinsville	MA	01588	115 MASON RD
7	334			CASEY FAMILY NOMINEE TRUST	JOhn T \& LOIS A CASEY TRS	151 MASON RD	whitinsville	MA	01588	151 MASON RD
7	335			SWARTZ Peter s	MARYANNE BELMONTE SWArtz	96 Kerry Ln	whitinsville	MA	01588	96 KERRY LN
7	336			miedema david ili \& Kathieen e, trs	miedema family living trust	84 KERRY LN	whitinsvilue	MA	01588	84 KERRY LN
7	337			Robinson daniel P		72 KERRY LN	whitinsville	MA	01588	72 KERRY LN
7	347			BOL NICHOLAS P	kelly s bol, te	69 Kerry Ln	Whitinsville	MA	01588	69 KERRY LN
7	348			durgin william R	LINDA F DURGIn	81 kerry lane	whitinsvilue	MA	01588	81 KERRY LN
7	349			OUILLEtte david u	maryann ouillette	93 KERRY LN	whitinsville	MA	01588	93 KERRY LN
7	350			barkley john C	beth a barkley	175 MASON RD	whitinsville	MA	01588	175 MASON RD
7	351			banning robert a	Elizabeth a banning	191 MASON RD	whitinsville	MA	01588	191 MASON RD
7	352			COOK BRIAN D	RATE E COOK, TE	76 MIChael Ln	whitinsville	MA	01588	76 MICHAEL LN
7	353			HENDERSON CHRISTOPHER	KAREN D henderson	64 MICHAEL LN	WhITINSVILLE	MA	01588	64 MICHAEL Ln

Map	Block Lot	Unit	Owner~s Name	Co Owner \sim s Name	Address	City	ST	zip	Parcel Location
7	354		Townsend david J	JESSICA M TOWNSEND	50 MICHAEL LN	whitinsville	MA	01588	50 MICHAEL LIN
7	361		CALUORI MICHAEL JR	BARBARA WINSOR CALUORI	45 michael lane	whitinsville	MA	01588	45 MICHAEL LN
7	362		mutell robert a	CARolyn a mutell	57 michael lane	whitinsville	MA	01588	57 MICHAEL LN
7	363		hedtier ashley e	SCOTT M HEDTLER	71 MICHAEL LN	whitinsvilue	MA	01588	71 MICHAEL LN
7	364		kelley thomas a	Nicole f keliey	211 MASON RD	whitinsvilie	MA	01588	211 MASON RD
7	365		Jorritsma RICHARD L	RIA H JORRITSMA, TE	223 MASON RD	whitinsvilue	MA	01588	223 MASON RD
7	366		TUCKER BRANDON P	c/o michaed joseph lang	60 CANTON ST	Sharon	MA	02067	40 ACORN RD
7	367		white matthew J	kelly a white	34 ACORN RD	whitinsvilile	MA	01588	34 ACORN RD
7	368		broors amy l		28 ACORN RD	whitinsville	MA	01588	28 ACORN RD
7	369		Stefaniak michael J JR te	anne b Stefaniak	22 ACORN RD	whitinsvilie	MA	01588	22 ACORN RD
7	373		perry steven m	kathleen b perry	25 ACORn RD	whitinsville	MA	01588	25 ACORN RD
7	374		Coe james t		29 ACORN RD	whitinsvilue	MA	01588	29 ACORN RD
7	375		duffy susan b	C/O JOShua \& SARAH RODHE	35 ACORN RD	whitinsvilide	MA	01588	35 ACORN RD
7	376		LESSARD VICTOR I	FRANCES M Lessard	251 MASON RD	whitinsvilie	MA	01588	251 MASON RD
7	377		EbBeling ronald J	C/o Steven \& brianne susel	263 MASON RD	whitinsvilue	MA	01588	263 MASON RD
7	378		GARD GERALD I	JEAN M GARD	277 MASON RD	whitinsvilue	MA	01588	277 MASON RD
7	379		SWEetman robert d	Joann sweetman	291 MASON RD	whitinsvilue	MA	01588	291 MASON RD
7	380		edwards Michael a	MARGARET K edwards	308 SWIFT RD	whitinsvilie	MA	01588	308 SWIFT RD
7	381		bliss burt j	SHERYI L BLISS	298 SWIET RD	whitinsvilie	MA	01588	298 SWIFT RD
7	382		gagnon david r	EdNa I GAGNon, TE	286 SWIET RD	whitinsvilie	MA	01588	286 SWIFT RD
7	386		Arbuckle priscilla s	john D Arbuckle	82 Fairlamin St	whitinsvilie	MA	01588	82 FAIRLAWN ST
7	387		MORRISSETTE PATRICIA F		94 SULLIVAN DR	whitinsvilie	MA	01588	94 SULLIVAN DR
6A	2		bailey stella C, i.e.	C/O THOMAS \& Christine scanlon	236 No MAIN ST	whitinsvilie	MA	01588	236 NO MAIN ST
6 A	3		GONYNOR ROBERT		222 NO MAIN ST	whitinsville	MA	01588	222 NO MAIN ST
6A	4		tran steve		2077 WISTERIA LN	middleburg	FL	32068-5037	206 NO MAIN ST
6A	7		ROONEY LAWRENCE	CHERRY H ROONEY	25 WEST HILI RD	mendon	MA	01756	34-44 OVERLOOK ST
6 A	8		CC\&L Properties, llc	george \& Laura pappas	4 budreau ave	mililbury	MA	01527	22-32 OVERLOOK ST
6A	11		LORD WILliam J	DANIEL E LORD	1-3 OVERLOOK ST	whitinsville	MA	01588	1-3 OVERLOOK ST
6A	14		SOUTH MIDDLESEX NON-PROFIT	housing corporation	7 BISHOP ST	framingham	MA	01702	21-31 OVERLOOK ST
6 A	15		SOUTH MIDDLESEX NON-PROFIT	HOUSING CORPORATION	7 bishof St	Framingham	MA	01702	33-43 OVERLOOK ST
6A	16		CARROLL DAVID JR	michelle a carroll	PO BOX 333	whitinsvilile	MA	01588	182-184 NO MAIN ST
6A	19		barer gregory	heather baker, te	1.50 NO MAIN ST	whitinsvilile	MA	01588	150 NO MAIN ST
6 A	21		humphrey branden J	Sharon R humphrey, te	PO BOX 467	goffstown	NH	03045	108-112 NO MAIN ST
6A	22		Mello paul j, sR	donna melio, te	1-3 Crescent st	whitinsville	MA	01588	1-3 Crescent st
6A	23		kent ronald r	DAVIde e tremblay, te	5-7 Crescent st	whitinsville	MA	01588	5-7 Crescent st
6 A	24		MAYER Christopher j	julie laplante	18-22 CRESCENT ST	whitinsvilue	MA	01588	18-22 CRESCENT ST
6A	25		haggerty richard R	C/O michael ramd \& kelly royce	14-16 CRescent st	whitinsvilie	MA	01588	14-16 CRESCENT ST
6 A	26		guiou diane		10-12 CRESCENT ST	whitinsvilie	MA	01588	10-12 CRESCENT ST
6A	27		kAmishlian nicole	C/O Steven lloyd dearborn	6-8 CRESCENT ST	whitinsville	MA	01588	6-8 CRESCENT ST
6 A	28		tharsille, Llc		P O box 341	manchaug	MA	01526	2-4 Arcade st
6 A	36		beaudotn harriet	MICHAEL BONET \& NATASHA SANTORO,TC	5 ARCADE ST	whitinsvilie	MA	01588	5-7 ARCADE ST
6 A	37		PLANT BRIAN	Colleen m Plant, te	1 ARCADE ST	whitinsvilile	MA	01588	1-3 Arcade st
6A	38		mCLAUGHLIN NANCY A	COLLeen m mclaughlin	4 Crescent street	whitinsvilue	MA	01588	2-4 CRESCENT ST
6A	39		oikle arnold l	Carol lee oikle	329 Hazel St	UXBRIDGE	MA	01569	96-98 NO MAIN ST
6 A	40		White ronald l	kathleen a white	88 NO MAIN ST	whitinsvilie	MA	01588	86 No MAIN ST
6 A	123		drosidis konstantinos	Eleni drosidis	199 NO MAIN ST	whitinsvilie	MA	01588	205 NO MAIN ST
4/11/2019 4:22:01PM									

ABBUTTERS LISTING

NORTHBRIDGE, MA

Map	Block	Lot	Unit	Owner ${ }^{\text {c }}$ S Name	Co Owner~s Name	Address	City	ST	zip	Parcel Location
6A	124			TINKLENBERG JACOB K	BEVERLY R TINKIENBERG, TE	225 NO MAIN ST	whitinsvilue	MA	01588	NO MAIN ST
6A	125			tinklenberg jacob	beverly tinklenberg	225 NO MAIN ST	whitinsville	MA	01558	225 No MAIN ST
6A	126			nye Steven R		233 NO MAIN ST	whitinsville	MA	01588	233 NO MAIN ST
6A	127			CRAY Brian R	CRAY JUlie a	241 NO MAIN ST	whitinsville	MA	01588	241 No MAIN ST
6A	128			Whitinsville redevelopment tr	Sidney covich trustee	1 main Street	whitinsville	MA	01588	No MAIN ST
6A	149			REINHOLT Ashley J	Johnathon william reinholt te	18 bunkerhili pkwy	WEST BOYLSton	MA	01583-2004	11 OVERLOOR ST
6 A	150			deutsche bank nat trust co	C/O IRISH GREGOR	546 FOWIER RD	NORTHBRIDGE	MA	01534	13 OVERLOOK ST
6 A	151			faicione robert J		15 OVERLOOK ST	whitinsvilile	MA	01588	15 OVERLOOK ST
6A	152			LSE9 MASTER PARTICIPATION TRUST	us bank trust, nA, trustee	C/0 \% RESICAP	AtLANTA	GA	30326	17 OVERLOOR ST
6A	153			ESCOTt DOnNa J		19 OVERLOOK ST	whitinsville	MA	01588	19 OVERLOOR ST
6A	161			CRUZ, VICTOR RAEAEL	c/o vs Cruz realty lic	30 KINGSton ST	LAWRENCE	MA	01843	60 OVERLOOK ST
6A	162			CRUZ VICtor	c/o vs cruz realty lic	30 KINGSton St	LAWRENCE	MA	01843	62 OVERLOOK ST
6A	163			CRUZ VICtor	c/o vs Cruz realty lic	30 KINGSTON ST	Lamrence	MA	01843	64 OVERLOOK ST
6A	164			the brady impact	c/o vs cruz realty lic	30 kINGSton St	LAWRENCE	MA	01843	66 OVERLOOK ST
6A	165			eldridge linda	WESLEY ELDRIDGE, TE	70 BIRCH ST APT 3	WORCESter	MA	01603-2726	68 OVERLOOK ST
6 A	178			cruz victor	c/o vs cruz reaity lic	30 KINGSton ST	LAWRENCE	MA	01843	58 OVERLOOK ST
6A	218			Billmyer michael	JAnet billmyer, te	5 OVERLOOK ST	whitinsvilie	MA	01588	5 OVERLOOK ST
6A	219			haden kyle a	C/O TRISHA/DANIEL BEGNOCHE	7 OVErLOoK ST	whitinsvilie	MA	01588	7 OVERLOOK ST
6A	276			GADOURY HOMES LLC		6 Reservoir ave	manchaug	MA	01526	46 OVERLOOK ST
6A	277			46-56 OVErlook st condominium	C/O GAdoury homes lic	P O BOX 495	manchaug	MA	01526	48 OVERLOOK ST
6 A	278			46-56 OVERLOOK ST Condominium	c/o gadoury homes llc	P O box 495	manchaug	MA	01526	50 OVERLOOK ST
6A	279			46-56 OVERLOOK ST CONDOMINIUM	C/O GADOURY HOMES LLC	P O BOX 495	manchaug	MA	01526	52 OVERLOOK ST
6 A	280			46-56 OVERLOOK ST CONDOMINIUM	C/O GAdoury homes luc	P O BOX 495	MANCHAUG	MA	01526	54 OVERLOOK ST
6A	281			46-56 OVERLOOK ST Condominium	C/O Gadoury homes llc	PO BOX 495	manchaug	MA	01526	56 OVERLOOK ST

CHILTON KENDELL A
125 BROOKWAY DR
NORTHBRIDGE, MA 01534

GUO BINGZHU
125 BROOKWAY DR
NORTHBRIDGE, MA 01534

YOUNGSMA ALVIN H TR
MARY L YOUNGSMA TR
269 NO MAIN ST
WHITINSVILLE, MA 01588

MONTECALVO JOSEPH J
MARGARET B MONTECALVO
279 NO MAIN ST
WHITINSVILLE, MA 01588

TOWN OF NORTHBRIDGE
N/A
NORTHBRIDGE, MA 01534

K T K M REALTY TRUST
611 LINCOLN ST
FRANKLIN, MA 02038

CONNOLLY JOHN C
KAREN J CONNOLLY
97 TRACEY DRIVE
WHITINSVILLE, MA 01588

O'DONNELL GLENN E
DONNA O'DONNELL
89 MASON RD
WHITINSVILLE, MA 01588

LAYDON JOSEPH T CHRISTINA P LAYDON
63 MASON RD
WHITINSVILLE, MA 01588

CIOFFI ALFRED
CYNTHIA CIOFFI
82 MASON RD
WHITINSVILLE, MA 01588

KELLY SUSAN A
SEAN J KELLY
70 MASON RD
WHITINSVILLE, MA 01588

PIXLEY GERALD W
SUSAN M PIXLEY, TE
56 MASON RD
WHITINSVILLE, MA 01588

HEFFERNAN TIMOTHY M JACQUELYN M LYONS-HEFFERNAN 48 MASON RD
WHITINSVILLE, MA 01588

NAU LURANA M
66 FAIRLAWN ST
WHITINSVILLE, MA 01588

DAWSON MICHAEL J
C/O TOBIAS M CONIO
60 FAIRLAWN ST
WHITINSVILLE, MA 01588

BAXENDALE JAMES F TRUSTEE
BAXENDALE REALTY TRUST
52 FAIRLAWN ST
WHITINSVILLE, MA 01588

THIBODEAU RITA P, LE
M STOCKHAUS, L SOHIGIAN, S KURAS, T 34 FAIRLAWN ST
WHITINSVILLE, MA 01588

MARSHALL BRIAN
LYNN MARSHALL
26 FAIRLAWN ST
WHITINSVILLE, MA 01588

WHITAKER CHRISTINA A 20 FAIRLAWN ST
WHITINSVILLE, MA 01588

CAMPBELL JESSICA L
JONATHON S CAMPBELL TE 352 NO MAIN ST
WHITINSVILLE, MA 01588

TAYLOR JOSEPH R
C/O JOSEPH R TAYLOR TRUSTEE
344 NO MAIN ST
WHITINSVILLE, MA 01588

KUINDERSMA MARK
DIANE M BEAULIEU, JT
70 FAIRLAWN ST
WHITINSVILLE, MA 01588

POULIOT JEANNETTE L BRAIN G POULIOT, TC 330-332 NO MAIN ST WHITINSVILLE, MA 01588

BEDIGIAN JAMES D
320 NO MAIN ST
WHITINSVILLE, MA 01588

SHANNAHAN JOHN P
C/O ANDREW \& ABAGAIL YANCO 306 NO MAIN ST
WHITINSVILLE, MA 01588

WIERSMA BERNARD TRUSTEE
B \& M WIERSMA LIVING TRUST 104 SULLIVAN DR
WHITINSVILLE, MA 01588

BOWMAN RONALD
NANCY BOWMAN
82 SULLIVAN DR
WHITINSVILLE, MA 01588

GARRITY ROBERT M
74 SULLIVAN DR
WHITINSVILLE, MA 01588

DESPLECHIIN DAWN M
WILLIAM D ISON, JT 64 SULLIVAN DR WHITINSVILLE, MA 01588

GILE CARROLL G
C/O JOCELYN L ARN
56 SULLIVAN DR
WHITINSVILLE, MA 01588

DOBELBOWER JAKE
ASHLEY L DOBELBOWER
48 SULLIVAN DR
WHITINSVILLE, MA 01588

BROWN MICHAEL L
38 SULLIVAN DR
WHITINSVILLE, MA 01588

POWERS EILEEN
NANCY A \& THOMAS P POWERS, JT
25 SULLIVAN DR
WHITINSVILLE, MA 01588

POWERS EILEEN
NANCY A \& THOMAS P POWERS, JT 25 SULLIVAN DR WHITINSVILLE, MA 01588

FREMEAU MARK J
LYNNE VALLEY FREMEAU
270 NO MAIN ST
WHITINSVILLE, MA 01588

OSIECKI DIANE C LIFE ESTATE
LAURIE A CIRAS
278 NO MAIN ST
WHITINSVILLE, MA 01588

BRIAND MAUREEN E TRUSTEE FEEN FAA
89 SULLIVAN DR
WHITINSVILLE, MA 01588

ZAWIERUSZYNSKI MARYANN P
MICHAEL ZAWIERUSZYNSKI
296 NO MAIN ST
WHITINSVILLE, MA 01588

FORNACIARI ANTHONY M
C/O MEGHAN M WINCHELL \& SUSAN BU] 286 NO MAIN ST
WHITINSVILLE, MA 01588

POULIOT MICHAEL J
ANALIEZEL POULOIT, TE
264 NO MAIN ST
WHITINSVILLE, MA 01588

FLAHERTY MATTHEW T
256 NO MAIN ST
WHITINSVILLE, MA 01588

BALL JASON ANDREW
C/O JASON BALL \& DONNA EVANS
246 NO MAIN ST
WHITINSVILLE, MA 01588

TOWN OF NORTHBRIDGE
W E BALMER SCHOOL WHITINSVILLE, MA 01588

MAHONEY NOMINEE TRUST
C/O PATRICK H \& ELAINE L MAHONEY
2900 PROVIDENCE RD N
NORTHBRIDGE, MA 01534

LEGERE PROPERTIES LLC
JOHN R LEGERE JR
1 CRESTVIEW DR
UXBRIDGE, MA 01569

BELLI HEATHER
MICHAEL ALDEN, JT
56 LAKE ST
WHITINSVILLE, MA 01588

AUSTIN LUKE C TE
HOLLY L AUSTIN TE
325 SWIFT RD
WHITINSVILLE, MA 01588

COLLINS RUSSELL D
KATHLEEN Y COLLINS
292 MASON RD
WHITINSVILLE, MA. 01588

CHAGNON IRREVOCABLE FAMILY TRUS' PAUL CHAGNON/DENISE ZECCO,TRUSTE 282 MASON RD
WHITINSVILLE, MA 01588

CRAIG FRANCINE
C/O A PEREZ \& K RIVERA
266 MASON RD
WHITINSIVLLE, MA 01588

ZANELLA PATRICK T
TARA A ZANELLA
254 MASON RD
WHITINSVILLE, MA 01588

VALIS DAVID O
LINDA M VALIS
244 MASON RD
WHITINSVILLE, MA 01588

BARIS CHARLES R
CATHERINE F BARIS
230 MASON RD
WHITINSVILLE, MA 01588

COURTEMANCHE JOHN
JACQUELINE C COURTEMANCHE 216 MASON RD
WHITINSVILLE, MA 01588

ARMSTRONG JOHN A
MARY L ARMSTRONG
PO BOX 172
WHITINSVILLE, MA 01588

BIGNESS KYLE
KERI L BIGNESS
192 MASON RD
WHITINSVILLE, MA 01588

BROOKS JOHN LEROY
178 MASON RD
WHITINSVILLE, MA 01588

STOCKWELL EDWARD R SR MARGARET B STOCKWELL, TE 168 MASON RD WHITINSVILLE, MA 01588

KELLEHER SEAN D
C/O JEREMY HARRIS/LESLIE R COSGRO 156 MASON RD
WHITINSVILLE, MA 01588

KOUREY NICHOLAS W C/O SCOTT \& SAMANTHA MURDOUGH 146 MASON RD
WHITINSVILLE, MA 01588

GUGLIELMO KENNETH R
MARIA A GUGLIELMO
138 MASON RD
WHITINSVILLE, MA 01588

GAMBON THOMAS M
130 MASON RD
WHITINSIVLLE, MA 01588

SULLIVAN BRIAN J 68 EVERGREEN CR WHITINSVILLE, MA 01588

FORTIN LIVING TRUST
DENNIS J \& BARBARA J FORTIN, TRUSTE 56 EVERGREEN CR
NORTHBRIDGE, MA 01588

HAY CRAIG D
MARY E HAY,TE
32 EVERGREEN CR WHITINSVILLE, MA 01588

CAHALANE JONATHAN V
DENISE E CAHALANE 20 EVERGREEN CR WHITINSVILLE, MA 01588

NEWELL KENNETH S BRENDA L NEWELL 19 EVERGREEN CR WHITINSVILLE, MA 01588

HAWKES CHARLES B KRISTINE B HAWKES 126 FAIRLAWN ST WHITINSVILLE, MA 01588

FROMENT KRISTINE A DAVID MA FROMENT,TE 31 EVERGREEN CR WHITINSVILLE, MA 01588

MALONE MICHAEL P MELISSA A MALONE 41 EVERGREEN CR WHITINSVILLE, MA 01588

COGLIANDRO PAUL D
SUSAN M. COGLIANDRO
53 EVERGREEN CIR
WHITINSVILLE, MA 01588

TOWN OF NORTHBRIDGE
N/A
WHITINSVILLE, MA 01588

PILEGGI MARK \& DAVID PILEGGI JR. TRT C/O PILEGGI IRREVOCABLE TRUST 65 EVERGREEN CR WHITINSVILLE, MA 01588

VITAGLIANO ROBERT
ELISABETH VITAGLIANO
94 MASON RD
WHITINSVILLE, MA 01588

PILEGGI DAVID J JR
ALISON PILEGGI, TE
120 MASON RD
WHITINSVILLE, MA 01588

DEMBROWSKI STEPHEN J MARIE A DEMBROWSKI 103 MASON RD
WHITINSVILLE, MA 01588

GAY BRUCE C
MARGARET M GAY
80 DOVER DR
WHITINSVILLE, MA 01588

DER MUGRDITCHIAN MARK
CYNTHIA DER MUGRDITCHIAN
75 DOVER DR
WHITINSVILLE, MA 01588

FLEMING KEVIN J
C/O PHILIP \& SARAH HANNA
89 DOVER DR
WHITINSVILLE, MA 01588

ROSSELLI ANTHONY J
C/O ANTHONY J ROSSELLI 109 DOVER DR WHITINSVILLE, MA 01588

CRAWFORD RYAN
CARRIE CRAWFORD,TE
115 MASON RD
WHITINSVILLE, MA 01588

CASEY FAMILY NOMINEE TRUST
JOHN T \& LOIS A CASEY TRS
151 MASON RD
WHITINSVILLE, MA 01588

SWARTZ PETER S
MARYANNE BELMONTE SWARTZ 96 KERRY LN
WHITINSVILLE, MA 01588

MIEDEMA DAVID III \& KATHLEEN E, TRS
MIEDEMA FAMILY LIVING TRUST
84 KERRY LN
WHITINSVILLE, MA 01588

ROBINSON DANIEL P
72 KERRY LN
WHITINSVILLE, MA 01588

BOL NICHOLAS P
KELLY S BOL, TE
69 KERRY LN
WHITINSVILLE, MA 01588

DURGIN WILLIAM R
LINDA F DURGIN
81 KERRY LANE
WHITINSVILLE, MA 01588

OUILLETTE DAVID J
MARYANN OUILLETTE
93 KERRY LN
WHITINSVILLE, MA 01588

BARKLEY JOHN C
BETH A BARKLEY
175 MASON RD
WHITINSVILLE, MA 01588

BANNING ROBERT A
ELIZABETH A BANNING
191 MASON RD
WHITINSVILLE, MA 01588

COOK BRIAN D
KATE E COOK,TE
76 MICHAEL LN WHITINSVILLE, MA 01588

HENDERSON CHRISTOPHER
KAREN D HENDERSON
64 MICHAEL LN
WHITINSVILLE, MA 01588

TOWNSEND DAVID J
JESSICA M TOWNSEND
50 MICHAEL LN
WHITINSVILLE, MA 01588

CALUORI MICHAEL JR
BARBARA WINSOR CALUORI
45 MICHAEL LANE
WHITINSVILLE, MA 01588

MUTELL ROBERT A
CAROLYN A MUTELL 57 MICHAEL LANE WHITINSVILLE, MA 01588

HEDTLER ASHLEY E
SCOTT M HEDTLER 71 MICHAEL LN WHITINSVILLE, MA 01588

KELLEY THOMAS A
NICOLE F KELLEY
211 MASON RD
WHITINSVILLE, MA 01588

JORRITSMA RICHARD L
RIA H JORRITSMA, TE 223 MASON RD
WHITINSVILLE, MA 01588

TUCKER BRANDON P C/O MICHAEL JOSEPH LANG
60 CANTON ST
SHARON, MA 02067

WHITE MATTHEW J
KELLY A WHITE
34 ACORN RD
WHITINSVILLE, MA 01588

BROOKS AMY L
28 ACORN RD
WHITINSVILLE, MA 01588

STEFANIAK MICHAEL J JR TE
ANNE B STEFANIAK
22 ACORN RD
WHITINSVILLE, MA 01588

PERRY STEVEN M KATHLEEN B PERRY
25 ACORN RD
WHITINSVILLE, MA 01588

COE JAMES T
29 ACORN RD
WHITINSVILLE, MA 01588

DUFFY SUSAN B
C/O JOSHUA \& SARAH RODHE 35 ACORN RD
WHITINSVILLE, MA 01588

LESSARD VICTOR L
FRANCES M LESSARD
251 MASON RD
WHITINSVILLE, MA 01588

EBBELING RONALD J
C/O STEVEN \& BRIANNE SUSEL
263 MASON RD
WHITINSVILLE, MA 01588

GARD GERALD I
JEAN M GARD
277 MASON RD
WHITINSVILLE, MA 01588

SWEETMAN ROBERT D
JOANN SWEETMAN
291 MASON RD
WHITINSVILLE, MA 01588

EDWARDS MICHAEL A
MARGARET K EDWARDS
308 SWIFT RD
WHITINSVILLE, MA 01588

BLISS BURT J
SHERYL L BLISS
298 SWIFT RD
WHITINSVILLE, MA 01588

GAGNON DAVID R
EDNA I GAGNON, TE
286 SWIFT RD
WHITINSVILLE, MA 01588

ARBUCKLE PRISCILLA S
JOHN D ARBUCKLE
82 FAIRLAWN ST
WHITINSVILLE, MA 01588

MORRISSETTE PATRICIA F
94 SULLIVAN DR
WHITINSVILLE, MA 01588

BAILEY STELLA C, L.E.
C/O THOMAS \& CHRISTINE SCANLON 236 NO MAIN ST
WHITINSVILLE, MA 01588

GONYNOR ROBERT
222 NO MAIN ST
WHITINSVILLE, MA 01588

TRAN STEVE
2077 WISTERIA LN
MIDDLEBURG, FL 32068-5037

ROONEY LAWRENCE
CHERRY H ROONEY
25 WEST HILL RD
MENDON, MA 01756

CC\&L PROPERTIES, LLC
GEORGE \& LAURA PAPPAS
4 BUDREAU AVE
MILLBURY, MA 01527

LORD WILLIAM J
DANIEL E LORD
1-3 OVERLOOK ST
WHITINSVILLE, MA 01588

SOUTH MIDDLESEX NON-PROFIT
HOUSING CORPORATION
7 BISHOP ST
FRAMINGHAM, MA 01702

SOUTH MIDDLESEX NON-PROFIT
HOUSING CORPORATION
7 BISHOP ST
FRAMINGHAM, MA 01702

CARROLL DAVID JR
MICHELLE A CARROLL
PO BOX 333
WHITINSVILLE, MA 01588

BAKER GREGORY
HEATHER BAKER, TE
150 NO MAIN ST
WHITINSVILLE, MA 01588

HUMPHREY BRANDEN J
SHARON R HUMPHREY, TE
PO BOX 467
210 ELM ST
GOFFSTOWN, NH 03045

MELLO PAUL J, SR
DONNA MELLO, TE
1-3 CRESCENT ST
WHITINSVILLE, MA 01588

KENT RONALD R
DAVIDE E TREMBLAY,TE
5-7 CRESCENT ST
WHITINSVILLE, MA 01588

MAYER CHRISTOPHER J
JULIE LAPLANTE 18-22 CRESCENT ST
WHITINSVILLE, MA 01588

HAGGERTY RICHARD R
C/O MICHAEL RAAD \& KELLY ROYCE
14-16 CRESCENT ST
WHITINSVILLE, MA 01588

GUIOU DIANE
10-12 CRESCENT ST
WHITINSVILLE, MA 01588

KAMISHLIAN NICOLE
C/O STEVEN LLOYD DEARBORN
6-8 CRESCENT ST
WHITINSVILLE, MA 01588

THARSILLE, LLC
P O BOX 341
MANCHAUG, MA 01526

BEAUDOIN HARRIET
MICHAEL BONET \& NATASHA SANTORO.
5 ARCADE ST
WHITINSVILLE, MA 01588

PLANT BRIAN
COLLEEN M PLANT, TE
1 ARCADE ST
WHITINSVILLE, MA 01588

MCLAUGHLIN NANCY A
COLLEEN M MCLAUGHLIN
4 CRESCENT STREET
WHITINSVILLE, MA 01588

OIKLE ARNOLD L
CAROL LEE OIKLE
329 HAZEL ST
UXBRIDGE, MA 01569

WHITE RONALD L
KATHLEEN A WHITE
88 NO MAIN ST
WHITINSVILLE, MA 01588

DROSIDIS KONSTANTINOS
ELENI DROSIDIS
199 NO MAIN ST
WHITINSVILLE, MA 01588

TINKLENBERG JACOB K
BEVERLY R TINKLENBERG, TE
225 NO MAIN ST
WHITINSVILLE, MA 01588

TINKLENBERG JACOB
BEVERLY TINKLENBERG
225 NO MAIN ST
WHITINSVILLE, MA 01558

NYE STEVEN R
233 NO MAIN ST
WHITINSVILLE, MA 01588

CRAY BRIAN R
CRAY JULIE A
241 NO MAIN ST
WHITINSVILLE, MA 01588

WHITINSVILLE REDEVELOPMENT TR
SIDNEY COVICH TRUSTEE
1 MAIN STREET
WHITINSVILLE, MA 01588

REINHOLT ASHLEY J
JOHNATHON WILLIAM REINHOLT TE
18 BUNKERHILL PKWY
WEST BOYLSTON, MA 01583-2004

DEUTSCHE BANK NAT TRUST CO
C/O IRISH GREGOR
546 FOWLER RD
NORTHBRIDGE, MA 01534

FALCIONE ROBERT J
15 OVERLOOK ST
WHITINSVILLE, MA 01588

LSF9 MASTER PARTICIPATION TRUST
US BANK TRUST, NA, TRUSTEE
C/O \% RESICAP
3630 PEACHTREE RD NE SUITE 150 ATLANTA, GA 30326

ESCOTT DONNA J
19 OVERLOOK ST
WHITINSVILLE, MA 01588

CRUZ, VICTOR RAFAEL C/O VS CRUZ REALTY LLC
30 KINGSTON ST
LAWRENCE, MA 01843

CRUZ VICTOR
C/O VS CRUZ REALTY LLC
30 KINGSTON ST
LAWRENCE, MA 01843

CRUZ VICTOR
C/O VS CRUZ REALTY LLC 30 KINGSTON ST
LAWRENCE, MA 01843

THE BRADY IMPACT
C/O VS CRUZ REALTY LLC 30 KINGSTON ST
LAWRENCE, MA 01843

ELDRIDGE LINDA
WESLEY ELDRIDGE, TE
70 BIRCH ST APT 3
WORCESTER, MA 01603-2726

CRUZ VICTOR
C/O VS CRUZ REALTY LLC 30 KINGSTON ST
LAWRENCE, MA 01843

BILLMYER MICHAEL
JANET BILLMYER, TE
5 OVERLOOK ST
WHITINSVILLE, MA 01588

HADEN KYLE A
C/O TRISHA/DANIEL BEGNOCHE
7 OVERLOOK ST
WHITINSVILLE, MA 01588

GADOURY HOMES LLC
6 RESERVOIR AVE
MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM
C/O GADOURY HOMES LLC
P O BOX 495
MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM
C/O GADOURY HOMES LLC
P O BOX 495
MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM
C/O GADOURY HOMES LLC
P O BOX 495
9 RESERVOIR AVE
MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM
C/O GADOURY HOMES LLC
P O BOX 495
9 RESERVOIR AVE
MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM
C/O GADOURY HOMES LLC
PO BOX 495
0 RESERVOIR AVE
MANCHAUG, MA 01526

February 28, 2019
Mr. James Sheehan, Building Inspector
Town of Northbridge
Aldrich School Town Hall Annex
14 Hill Street
Whitinsville, MA 01588

RE: W. Edward Balmer Elementary School - Zoning Bylaws Analysis

Dear Jim,
Following is our analysis of the Northbridge Zoning Bylaws as they apply to the project to construct a new Grades PK-5 elementary school on the site of the existing Balmer school, which will also involve the Vail Field parcel as part of the project. As requested, we are showing where the project meets the requirements of the bylaws, where it does not, and the mitigating factors that will demonstrate in our professional opinion, that there will be no substantial detriment to the public good or undue burdens placed on the town if it allows the non-conforming aspects of the project to be approved by waiver or variance. This letter is not an exhaustive analysis; only portions of the Zoning Bylaw that have direct bearing on the proposed development are included here.
I. LAND USE, VAIL FIELD

The Town Legal Counsel, KP Law, through its deed research, has determined that Vail Field is not subject to Article 97 (Change of Use of Public Parklands) regulations (letter attached). Furthermore, all existing athletic facilities are proposed to be replaced in-kind, in a new configuration, as part of the proposed site plan.
II. ZONING BYLAWS ANALYSIS

173-4 ZONING MAP:
The project site sits partially in two zones. The south portion (Crescent Street frontage) including Vail Field and some portion of the school parcel sits in zone R-5. The rear portion which includes the balance of the school parcel sits in zone R-2. The majority of the new school is located in the R-2 zone, which is used below for side yard setback calculations. The site is not part of any Overlay District, and is not located in a Floodway or Flood Plain district.

Figure 1 - Northbridge Zoning Map (partial) - May 2016, with property identified

ARCHITECTS

PROJECT MANAGERS

[^0]173-12 USE REGULATIONS:
Community Public Educational Facilities are a permitted use in Zones R-2 and R-5. (Table 173-12, Att. 2)
173-13.2 EROSION CONTROL:
The project will be subject to MA law and guidelines for construction erosion control, and an Erosion Control Plan will be submitted to the Town as part of the construction permit process. (Table 173-18.2. C and D)

173-20 HEIGHT AND BULK REGULATIONS:

TABLE 1: Dimensional Requirements per Zoning Bylaws (173-20 + 173 - Att. 1)

	Min. Lot Area (sq. ft.)	Min. Contiguous Frontage	Min. Front Yard Setback	Min. Side Yard Setback	Min. Rear Yard Setback	Max. Height in Stories	Max. Height in Feet*	Max. Total Lot Coverage (\%)
Required R-2	20,000	100'	40'	10'	40'	2.5	35^{\prime}	20\%
Required R-5	5,000	60^{\prime}	15	8'	20'	3	45	50\%
Existing**	1,310,285	730'	30^{\prime}	50^{\prime}	310'	2	$23^{\prime}-6{ }^{\prime \prime \prime}$	4 \%
Proposed New Project Actual Measurements (Re. R-2 zone)	1,310,285	730'	565.64'	384.7' west 42.65' east*	307.15	3*	44'-4" *	5.65 \%

* "Any maximum height permitted shall not apply to a community facility provided that the side and rear yards or setbacks required in the district for the highest permitted principal structure shall be increased two feet in width for each foot by which the height of such structure exceeds the height permitted in the district." See calculation below.
** Existing calculations are based on property ID: 7-138 (parcel the school building sits within.)

173-20 SIDE YARD SETBACK CALCULATION:

Exception for Community Facilities (Sec 173-20: Table Notes)
Height $43^{\prime}-10^{\prime \prime}$ to cornice; nominally $44^{\prime}-4^{\prime \prime}$ to average grade.

R-2 Allowable Height $=$	35^{\prime}
Proposed Height $=44^{\prime}-4^{\prime \prime}$	$\left(44.33^{\prime}\right)$
Height Delta $=$	9.33^{\prime}
Setback multiplier $=$	2.0
Added Setback	18.66^{\prime}
Base Side Setback	10^{\prime}
Required Side Setback	$\mathbf{2 8 . 6 6}$

Actual Side yard Setback
 42.65' at northeast corner

173-27 OFF-STREET PARKING AND LOADING REQUIREMENTS:
For reference, the existing structure has 96 paved, striped, legitimate parking spaces, and two loading spaces adjacent to the loading dock.

Parking:
Zoning Requirement: Community Facilities - Schools: 1 space per 300 NSF (table in Sec 173-27.C)
Building NSF $=111,568$ NSF
Zoning Requires 372 parking spaces
Desired Parking Program per District Working Group:

156 Staff + 24 Visitors	180 spaces
Additional Event Parking	89 spaces
Total Parking on Site Plan	246 spaces
Variance or Waiver for	$\mathbf{1 2 6}$ spaces

We are submitting an "Overflow Parking Plan" that will yield an additional 54 spaces (drawing attached). This brings the total on-site parking capacity to 300 spaces.

Loading Areas:
Zoning requires 1 per 7,500 NSF + 1 per 15,000 NSF in excess (table 2 in Sec.173-27.C)
Building NSF = 111,568 NSF
Zoning requires: 8 loading spaces
Project has: 2 loading spaces
Seeking Variance or Waiver for 6 loading spaces
Per the request of the Technical Review Committee at our $1 / 23 / 19$ meeting, we are submitting a verification of the school's parking needs as well as a Parking and Event Analysis which shows that there are no likely scenarios that will exceed the total onsite parking capacity. Most scenarios will easily be accommodated with the proposed 246 spaces, and the few high-capacity events will be accommodated using the Overflow plan for 300 spaces. (Documents attached)

Additional Zoning Requirements:
Proposed Parking and Loading Spaces are all on the same lot as the building served. (Sec.173-27.D.1, .2)
Proposed spaces are $9^{\prime} \times 18^{\prime}$ with 24^{\prime} drive aisle in lot configurations. Parallel parking spaces in the Overflow Plan are 9' $\mathrm{x} 22^{\prime}$ with a minimum 12^{\prime} drive lane accessing them. (Sec.173-27.D.3)

The proposed number of driveways accessing the public way (Crescent Street) is limited to two. (Sec.173-27.D.4)
Proposed two-way drive ways are 22 feet wide, two lanes of 11 feet. (Sec.173-27.D.5)
Loading spaces shall be 600 SF for the first 7,500 NSF and 500 SF for each additional 15,000 NSF. There are two spaces of 600 SF . The project has two proposed loading spaces of 900 SF that will accommodate a semi-trailer or straight truck. (Sec.173-27.D.9)

Handicapped parking spaces are provided in accordance with MAAB and ADA requirements. There are $8 \mathrm{H} / \mathrm{C}$ spaces on the site, where a minimum of 7 are required. (Sec.173-27.D.12; MAAB 521 CMR 23.2.1)

The balance of regulations 173-27.D 1-13 have been incorporated in the site plans.
The proposed plan includes landscaping plant materials (primarily trees to screen and shade the parking lot areas. (173-27.F.3-(a)-(c))

173-28 AREA, CONSTRUCTION AND LIGHTING STANDARDS
The west parking lot is approximately 100 feet and 20-30 feet down-slope from neighbors to the west. Parking lot islands feature trees which will screen the parking from views from above. It is our interpretation that solid screen walls are not required in this condition. The east parking is screened by both solid 6 ' stockade fencing at the property line, and dense evergreen shrubbery between the fence and the parking lots. Other provisions of this section are being complied with (D - lighting) or are not applicable (B, C). (173-28.A-D)

Please contact me if you have any question on the above material, and we look forward to continuing the permitting process for this project.

Sincerely,
DORE \& WHITTIER ARCHITECTS, INC.
Architects • Project Managers

Tom Hengelsberg, AIA
Project Manager
Attachments
cc: File

101 Arch Street, Boston, MA 02110 Tel: 617.556.0007 |Fax: 617.654.1735

Northbridge School Building Committee
Town Hall
7 Main Street
Whitinsville, MA 01588
Re: W. Edward Balmer Elementary School, Executive Office of Energy and Environmental Affairs Article 97 Land Disposition Policy

Dear Members of the School Building Committee:
I have reviewed the identified deed for the Balmer School site - deed of Whitin Machine Works to Town of Northbridge dated April 24, 1963 and recorded with the Worcester Registry of Deeds in Book 4369, Page 342. The deed conveyed 4 parcels to the Town. Parcel 1 is land on the northwesterly side of Crescent Street and the northeasterly side of North Main Street, said to contain 9.04 acres and Parcel 2 is a parcel northwesterly of Parcel 1 said to contain 21.04 acres. The copy of the deed provided by the Assessors' office includes the annotation that the land conveyed encompasses Assessors' Map 7, parcels 138 and 141. According to the Assessors' property card record for the Balmer School property, the school site has an address of 11 Crescent Street, is shown as parcel 138 on Assessors' Map 7, and contains 30.04 acres. (Assessors' Map 7 shows parcel 138 as containing 21.04 acres, with the designation "Balmer School" and parcel 141 as containing 9.04 acres.) Accordingly, it is my understanding that the school site is Parcel 1 and Parcel 2 described in the deed. (Parcel 3 is described as land on the northerly side of Plummer Road a/k/a Church Street, between Providence Road and Quaker Street, consisting of 2.51 acres; and Parcel 4 is described as land on the westerly side of Linwood Avenue, consisting of 30,014 square feet.)

The deed to the Balmer School site includes no statement of use limitations or restriction on Town use of the land. Therefore, it is my opinion that the deed does not impose a limitation that would make the site subject to Article 97 of the Amendments to the Massachusetts Constitution, which includes a prohibition against the sale or change in use of public parkland without special approval by a two-thirds roll call vote of the Legislature.

Article 97 can apply when land acquired without any use restriction is subsequently subjected to a restriction by a document recorded with the Registry of Deeds. See Smith v. City of Westfield, 90 Mass. App. Ct. 80, 82 (2016). It is my understanding that the Town is not aware of any such recorded restriction or similar action for the Balmer School site. My on-line search of Worcester Registry of Deeds records, by street - Crescent Street, did not reveal any subsequent recorded restriction.

KP LAW

Northbridge School Building Committee
August 31, 2017
Page 2
You have also informed me that a portion of the Balmer School site contains a recreational field area, known as Vail Field. In that regard, I reviewed certain votes taken at the March 12, 1963 Annual Town Meeting regarding the Town's acceptance of land from Whitin Machine Works - one parcel of approximately 6.22 acres "known as Vail Field . . . to be used for recreational purposes only" (Article 13) and one parcel of approximately 23.25 acres "adjacent to Vail Field . . . to be used as a school site only" (Article 16). Although the stated acreage for these two parcels is different from the parcel sizes reflected in the deed referenced above and the parcel sizes being carried on the Northbridge Assessors' records, it is my understanding that the votes refer to the parcels conveyed by that deed. The Vail Field designation for the smaller parcel appears to pre-exist any transfer to the Town from Whitin Machine Works. In any event, though, creation of a restriction for purposes of Article 97 of the Amendments to the Massachusetts Constitution requires an instrument recorded at the Registry of Deeds. See Mahajan v. Department. of Environmental Protection, 464 Mass. 604, 615 - 616 (2013), citing Selectmen of Hanson v. Lindsay, 444 Mass. 502 (2005). No such instrument has been identified. Accordingly, the existence of these votes, with no restrictive instrument recorded at the Registry of Deeds, does not alter the opinion that the Balmer School site is not subject to Article 97.

In accordance with the foregoing, and in response to your further question of August 28, 2017, it is my view that the so-called Vail Field portion of the site may be used for non-recreational purposes and that the other portions of the site may be used for recreational purposes.

Please contact me if you have any further questions on this matter.

DJD/man
cc: Board of Selectmen

589268 v.2/NBRI/0001

W.E. BALMER ELEMENTARY SCHOOL

DORE \& WHITTIER ARCHITECTS
DESIGN DEVELOPMENT ZONING SUBMISSION - PARKING ANALYSIS
TABLE 1 - STAFF COUNT
Verified with School Administration 1/31/19

SPACE	QUAN	$\begin{array}{\|c} \hline \text { ADULTS } \\ \text { BASED } \\ \text { IN } \\ \text { EACH } \\ \hline \end{array}$	FTE	STUDENTS IN EACH ${ }^{1}$	TOTAL STUDENTS	Remarks
PK CRS	4	1	4	18	72	
PK-K SPED	1	1	1	12	12	
K CRS	9	1	9	18	162	
GRADE 1-5 CRS	40	1	40	23	920	
1-2 SPED	2	3	6	12	24	
3-5 SPED	2	3	6	12	24	
RESOURCE ROOM	3	1	3			STUDENTS COUNTED ABOVE
STUDENT SERVICES	2	26	52			PROFESSIONALS WORK IN CLASSROOMS ABOVE
ART	2	1	2			STUDENTS COUNTED ABOVE
MUSIC	2	1	2			STUDENTS COUNTED ABOVE
GYMNASIUM	1	2	2			STUDENTS COUNTED ABOVE
LIBRARY	1	2	2			STUDENTS COUNTED ABOVE
MAKER	1	1	1			STUDENTS COUNTED ABOVE
OT/PT	1	2	2			STUDENTS COUNTED ABOVE
ADMIN + NURSE			16			INCL PRINCIPAL OFFICES ON LEVEL 2+3
TITLE 1 OFFICE			1			
KITCHEN			5			
MAINTENANCE STAFF			2			
SUBTOTAL - FTE			156		1214	
VISITORS						
ITINERANT PROFESSIONALS			2			Not full time - in building for no more than 2 hours
VOLUNTEERS			4			Sporadic, usually present for most of the school day
VISITORS			18			3 meetings a day $\times 6$ people, could be concurrent
SUBTOTAL			24			
TOTALS			180		1214	

${ }^{1}$ Reflects maximum enrollment, not actual present enrollment.

W.E. BALMER ELEMENTARY SCHOOL

DORE \& WHITTIER ARCHITECTS

DESIGN DEVELOPMENT ZONING SUBMISSION - PARKING ANALYSIS

TABLE 2 - PARKING AND EVENT ANALYSIS

Proposed Parking Spaces $246+$ Overflow Spaces $54=300$ Total Spaces Onsite Maximum
Table shows the maximum number of cars parked for any given time period/ scenario. Cells highlighted yellow indicate scenario totals above the number of conventional spaces. None of the scenarios exceed the total onsite maximum number of parking spaces, including overflow spaces

TIME OF DAY	EVENT/ CONDITION	FREQUENCY	PARKING (LONG TERM)	PARKING (S/T VISITOR <2 hours)	$\begin{array}{\|l} \hline \text { QUEUE } \\ \text { SPACE } \end{array}$	LOADING SPACE (Semi Truck)	REMARKS
SCHOOL DAY							
6:00 AM - 7:45 AM	Supply Deliveries	Daily M-F				2	Various deliveries throughout week, rarely more than one truck at a time.
6:00 AM - 2:00 PM	Kitchen \& Maint. staff in building		7				
6:30 AM - 4:00 PM	Teachers and Staff in Building	Daily M-F	156	24			
6:45 AM - 7:55 AM	Early Care Drop-off	Daily M-F		10			Indicates expected max cars at any one time.
7:45 AM - 8:00 AM	Pre-K Parent Park \& Drop-Off Arrival	Daily M-F		16			Park \& Drop Lot assumes 16 live spaces with 2-3 minute use; additional vehicles can use signed north row of west parking lot
8:00 AM - 8:15 AM	Parent Drop-Off \& Arrival	Daily M-F			74		Assume live spaces in a moving line; 74 vehicles at any one time
8:00 AM - 2:30 PM	Parent Volunteers	Daily M-F	4				
8:00 AM - 4:00 PM	Itinerant Staff in Building	Daily M-F		2			
8:00 AM - 4:00 PM	Long Term Visitors	Daily M-F		18			
2:45 PM - $3: 15$ PM	Dismissal and Parent Pick-up	Daily M-F			74		Some parents may queue earlier than this; 74 vehicles at any one time, additional early cars may park in ~ 89 vacant site spaces. Dismissals will be staged to even out the peak flow of traffic.
AFTERNOON							
3:00 PM - 5:00 PM	Student Game - Soccer Fields	Spring/Fall M-F	168				(32 players [assume 50% car factor] +6 adults +6 additional spectators) X 6 soccer fields $=168$ cars
3:00 PM - 5:00 PM	Student Game - Gymnasium	Winter M-F	47				Assumes basketball game: 20 players, 6 adults, 40 parents, 1 custd.
3:00 PM - 5:00 PM	School Meetings - Faculty/Staff	Daily M-TH	127				Assume all-staff meeting (peak count), 1 custodian
3:00 PM - 5:00 PM	School Club Meeting - Staff	2 x per week	5				Assume 20 student members, 4 adults, 1 custodian

W.E. BALMER ELEMENTARY SCHOOL

DORE \& WHITTIER ARCHITECTS

DESIGN DEVELOPMENT ZONING SUBMISSION - PARKING ANALYSIS

February 28, 2019

${ }^{2}$ This number assumes a competition event with full bleachers. Most community sporting events in the gym will be much more sparsely attended.

THE NEW W. EDV/ARD
 NORTHBRIDGE, MASSACHUSETTS

PLANNING BOARD SUBMISSION

APRIL 9, 2019

SMMA
Project Management

N ORTHBRIDGE
PUBLIC SCHOOLS

Massachusetts School Building Authority

E
FONTAINE BROS., INC.

DD SITE \& LANDSCAPE DESIGN PLAN

- 246 parking spaces
- 74 parent drop-off queue spaces
- 20 car active drop off curb zone
- Bus queue: (10) 40 ' busses or (7) 40^{\prime} busses and (4) 30^{\prime} busses or vans

W. EDWARD BALMER ELEMENTARY SCHOOL

DORE \& WHITTIER ARCHITECTS
SCALE: 1/2" = 1'-0"
LANDSCAPE SIGNAGE DETAIL - MAIN SITE ENTRANCE AT CRESCENT STREET

OPTICAL HOUSING

Heavy cast low copper aluminum (A356 alloy; $<0.2 \%$ copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance <土 .002") to facilitate thermal transfer of heat to housing and cooling fins. Solid barrier wall separates optical and electrical compartments. The optical and electrical compartments are integrated to create one assembly. Minimum wall thickness is . $188^{\prime \prime}$.

ELECTRICAL HOUSING w/ INTEGRATED ARM

Heavy cast low copper aluminum (A356 alloy; $<0.2 \%$ copper) assembly with integral cooling ribs surrounding the electrical compartment and a flat surface on the top of the arm to accommodate a photocell receptacle. Solid barrier wall separates optical and electrical compartments. The optical compartment and electrical compartment with the integrated support arm combine to create one assembly. Minimum wall thickness is .188". Cast and hinged driver assembly cover is integrated with wiring compartment cover.

PLED"'OPTICS

Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. LED optics completely seal each individual emitter to meet an IP66 rating. In asymmetric distributions, a micro-reflector inside the refractor re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H12 acrylic. Each LED refractor is sealed to the PCB over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. LED refractors produce standard site/area distributions. Panels are field replaceable and field rotatable in 90° increments.

LED DRIVER(S)

Constant current electronic with a power factor of $>.90$ and a minimum operating temperature of $-40^{\circ} \mathrm{F} /-40^{\circ} \mathrm{C}$. Driver(s) is/are UL and CUL recognized and mounted directly against the Electrical Housing to facilitate thermal transfer, held down by universal clamps to facilitate easy removal. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of $120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ or $347 \mathrm{~V}-480 \mathrm{~V}, 50,60 \mathrm{~Hz}$. ($0-10 \mathrm{~V}$ dimmable driver is standard. Driver has a minimum of 3 KV internal surge protection. Luminaire supplied with 20KV surge protector for field accessible installation.)

LED EMITTERS

High output LED's are utilized with drive currents ranging from 350 mA to 1050 mA . 70 CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.

AMBER LED's
PCA (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS Iamps and have a slight output in the blue spectral bandwidth. TRA (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.

FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at 140° F. Four step media blas \dagger and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability.

MAST ARM FITTER/ELECTRICAL HOUSING
Replaces standard Electrical Housing. Fits standard 2 3/8" O.D. horizontal tenon. Two (2) straps with two (2) bolts each encircle the lower half of the tenon. Upper half of the tenon rests on self-centering steps that position the angle of the luminaire at 0°, $+1.5^{\circ},+1.5$ or $+3^{\circ}$ up from the horizontal. All hardware is stainless steel.

PROJECT NAME:

PROJECT TYPE:

*DLC PENDING AS OF 7/17

RAZAR SERIES-LED

	Approximate Average Lumens - 4000K (Lumens median of all distributions)											
	350 mA			525mA			700 mA			1050mA		
	Watts	Lumens	HID Eq.									
24	28	3541	50	41	5058	$\begin{aligned} & 70- \\ & 100 \end{aligned}$	53	6567	100	81	8773	$150-$
40	45	5997	$\begin{gathered} 70- \\ 100 \end{gathered}$	66	8653	$\begin{aligned} & 100- \\ & 150 \end{aligned}$	87	10995	175	134	14647	$\begin{aligned} & 200- \\ & 250 \end{aligned}$
48	55	7046	100	81	10018	$\begin{aligned} & 150- \\ & 175 \end{aligned}$	105	12600	200	160	17566	250
80	87	11622	$\begin{aligned} & 175- \\ & 200 \end{aligned}$	131	16736	$200-$	174	21235	400	266	28190	$\begin{aligned} & 450- \\ & 575 \end{aligned}$
120	127	17405	250	195	24860	450	260	31592	$\begin{aligned} & 575- \\ & 750 \end{aligned}$	396	43323	$\begin{array}{r} 750- \\ 1000 \end{array}$

Spec/Order Example: RZR/PLED-IV/80LED-700mA/CW/277/RAL-8019-S

LED COUNT	$\begin{aligned} & \text { SOURCE } \\ & \text { TYPE } \end{aligned}$	SOURCE	INITIAL LUMENS 4000 K CCT	INITIAL LUMENS 3000K CCT	INITIAL LUMENS 5000 K CCT	L70 GREATER THAN (HR)	STARTING TEMP.	SYSTEM WATTS	VOLTS	MAX INPUT AMPS
24	LED	24 PLED ${ }^{\circledR}$ Optical Module-350mA	$\begin{aligned} & 3,298- \\ & 3,784 \end{aligned}$	$\begin{aligned} & 3,133- \\ & 3,595 \end{aligned}$	$\begin{aligned} & 3,463 \\ & 3,973 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	29	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.10 \end{aligned}$
24	LED	24 PLED ${ }^{\circ}$ Optical Module - 525mA	$\begin{aligned} & 4,711- \\ & 5,405 \end{aligned}$	$\begin{aligned} & 4,475- \\ & 5,135 \end{aligned}$	$\begin{aligned} & 4,947- \\ & 5,675 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	42	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.15 \end{aligned}$
24	LED	24 PLED ${ }^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & 6,023 \\ & 6,911 \end{aligned}$	$\begin{aligned} & 5,722- \\ & 6,565 \end{aligned}$	$\begin{aligned} & 6,324- \\ & 7,256 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	56	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.20 \end{aligned}$
24	LED	24 PLED ${ }^{\circ}$ Optical Module - 1050mA	$\begin{aligned} & 8,171 \\ & 9,375 \end{aligned}$	$\begin{aligned} & 7,762- \\ & 8,906 \end{aligned}$	$\begin{aligned} & 8,580- \\ & 9,844 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	82	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.30 \end{aligned}$
40	LED	40 PLED Optical Module - 350mA	$\begin{aligned} & 5,585- \\ & 6,408 \end{aligned}$	$\begin{aligned} & 5,306- \\ & 6,088 \end{aligned}$	$\begin{aligned} & 5,864- \\ & 6,729 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	43	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.17 \end{aligned}$
40	LED	40 PLED ${ }^{\circledR}$ Optical Module - 525mA	$\begin{aligned} & 8,059- \\ & 9,246 \end{aligned}$	$\begin{aligned} & 7,656- \\ & 8,784 \end{aligned}$	$\begin{aligned} & 8,462- \\ & 9,709 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	65	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.24 \end{aligned}$
40	LED	40 PLED ${ }^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & \text { 10,240 - } \\ & 11,749 \end{aligned}$	$\begin{aligned} & 9,728- \\ & 11,162 \end{aligned}$	$\begin{aligned} & 10,752- \\ & 12,337 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.32 \end{aligned}$
40	LED	40 PLED ${ }^{\circledR}$ Optical Module - 1050mA	$\begin{aligned} & 13,642- \\ & 15,652 \end{aligned}$	$\begin{aligned} & 12,960- \\ & 14,870 \end{aligned}$	$\begin{aligned} & 14,324- \\ & 16,435 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	128	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 0.49 \end{aligned}$
48	LED	48 PLED ${ }^{\circledR}$ Optical Module - 350mA	$\begin{aligned} & 6,562- \\ & 7,529 \end{aligned}$	$\begin{aligned} & 6,234- \\ & 7,153 \end{aligned}$	$\begin{aligned} & 6,890- \\ & 7,909 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	53	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.20 \end{aligned}$
48	LED	48 PLED ${ }^{\circ}$ Optical Module-525mA	$\begin{aligned} & 9,330- \\ & 10,705 \end{aligned}$	$\begin{aligned} & 8,864- \\ & 10,170 \end{aligned}$	$\begin{aligned} & 9,797- \\ & 11,240 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	79	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.29 \end{aligned}$
48	LED	48 PLED ${ }^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & 11,735- \\ & 13,464 \end{aligned}$	$\begin{aligned} & 11,148- \\ & 12,791 \end{aligned}$	$\begin{aligned} & 12,322- \\ & 14,137 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	106	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.38 \end{aligned}$
48	LED	48 PLED ${ }^{\circledR}$ Optical Module - 1050mA	$\begin{aligned} & 16,360- \\ & 18,771 \end{aligned}$	$\begin{aligned} & 15,542- \\ & 17,832 \end{aligned}$	$\begin{aligned} & 17,178-1 \\ & \text { 19,709 } \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	160	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 0.58 \end{aligned}$
RZR										
80	LED	80 PLED ${ }^{\circledR}$ Optical Module - 350 mA	$\begin{aligned} & 10,824- \\ & 12,419 \end{aligned}$	$\begin{aligned} & 10,283- \\ & 11,798 \end{aligned}$	$\begin{aligned} & 11,365- \\ & 13,040 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	86	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.33 \end{aligned}$
80	LED	80 PLED ${ }^{\circledR}$ Optical Module - 525mA	$\begin{aligned} & 15,587- \\ & 17,884 \end{aligned}$	$\begin{aligned} & 14,808- \\ & 16,990 \end{aligned}$	$\begin{aligned} & 16,366- \\ & 18,778 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	130	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.48 \end{aligned}$
80	LED	80 PLED ${ }^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & 19,767- \\ & 22,680 \end{aligned}$	$\begin{aligned} & 18,779- \\ & 21,546 \end{aligned}$	$\begin{aligned} & 20,755- \\ & 23,814 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	174	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 0.63 \end{aligned}$
80	LED	80 PLED ${ }^{\circledR}$ Optical Module - 1050mA	$\begin{aligned} & 26,255- \\ & 30,124 \end{aligned}$	$\begin{aligned} & 24,942- \\ & 28,618 \end{aligned}$	$\begin{aligned} & 27,568- \\ & 31,630 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	257	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 0.96 \end{aligned}$
RZR-G										
80	LED	80 PLED ${ }^{\circledR}$ Optical Module - 350 mA	$\begin{aligned} & 10,950- \\ & 12,564 \end{aligned}$	$\begin{aligned} & 10,403- \\ & 11,936 \end{aligned}$	$\begin{aligned} & 11,498- \\ & 13,192 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.33 \end{aligned}$
80	LED	80 PLED Optical Module - 525mA	$\begin{aligned} & 15,735- \\ & 18,054 \end{aligned}$	$\begin{aligned} & 14,948- \\ & 17,151 \end{aligned}$	$\begin{aligned} & 16,522- \\ & 18,957 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	129	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.48 \end{aligned}$
80	LED	80 PLED $^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & 20,074- \\ & 23,032 \end{aligned}$	$\begin{aligned} & \text { 19,071 - } \\ & 21,881 \end{aligned}$	$\begin{aligned} & 21,078- \\ & 24,184 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	174	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 0.63 \end{aligned}$
80	LED	80 PLED ${ }^{\circledR}$ Optical Module - 1050mA	$\begin{aligned} & 27,651- \\ & 31,725 \end{aligned}$	$\begin{aligned} & 26,268- \\ & 30,139 \end{aligned}$	$\begin{aligned} & 29,033- \\ & 33,311 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	266	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 0.96 \end{aligned}$
120	LED	120 PLED ${ }^{\circledR}$ Optical Module - 350 mA	$\begin{aligned} & 16,211- \\ & 18,599 \end{aligned}$	$\begin{aligned} & 15,400- \\ & 17,669 \end{aligned}$	$\begin{aligned} & \text { 17,021 - } \\ & \text { 19,529 } \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	130	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 0.46 \end{aligned}$
120	LED	120 PLED ${ }^{\circ}$ Optical Module - 525 mA	$\begin{aligned} & 23,154- \\ & 26,566 \end{aligned}$	$\begin{aligned} & 21996 \text { - } \\ & 25,238 \end{aligned}$	$\begin{aligned} & 24,312- \\ & 27,894 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	192	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.63 \\ & 0.70 \end{aligned}$
120	LED	120 PLED ${ }^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & 29,424- \\ & 33,760 \end{aligned}$	$\begin{aligned} & 27,953- \\ & 32,072 \end{aligned}$	$\begin{aligned} & 30,895- \\ & 35,448 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	260	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 2.17 \\ & 0.94 \end{aligned}$
120	LED	120 PLED ${ }^{\circ}$ Optical Module - 1050mA	$\begin{aligned} & 40,350- \\ & 46,296 \end{aligned}$	$\begin{aligned} & 38,333- \\ & 43,981 \end{aligned}$	$42,368-$	60,000+	$-20^{\circ} \mathrm{F}$	398	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 3.33 \\ & 1.43 \end{aligned}$

NOTES: 1. Max Input Amps is the highest of starting, operating, or open circuit currents.
2. Lumen values for LED Modules vary according to the distribution type. 80LED array appears in both the RZR and RZR-G models.
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use surge suppressor supplied with luminaire Note: Surge suppressors are considered a perishable device.
5. L7O(10K) - TM-21 $6 x$ rule applied.

WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

sOLID STATE AREA LIGHTING

RAZAR-PT2 SEZTIES-PLED

S P E C I F I C A T I O N S

OPTICAL HOUSING

Heavy cast low copper aluminum (A356 alloy; <0.2\% copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance $< \pm .003$ ") to facilitate thermal transfer of heat to housing and cooling fins. Minimum wall thickness is $.188^{\prime \prime}$. All hardware is stainless steel

TWIN ARM POST TOP MOUNTING/ELECTRICAL COMPARTMENT Two (2) 1/2" Sch. 40 round aluminum arms are welded to a cast low copper aluminum (A356 alloy; $<0.2 \% \mathrm{Cu}$) pole top tenon fitter which also serves as the LED Driver and wiring compartment. Tenon maximum $27 / 8^{\prime \prime}$ diameter x $31 / 2^{\prime \prime}$ height. All exposed hardware is stainless steel.

PLED" ${ }^{\text {m" }}$ OPTICS

Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. LED optics completely seal each individual emitter to meet an IP66 rating. In asymmetric distributions, a micro-reflector inside the refractor re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H 12 acrylic. Each LED refractor is sealed to the PCB over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. LED refractors produce standard site/area distributions. Panels are field replaceable and field rotatable in 90° increments.

LED DRIVERS

Constant current electronic with a power factor of $>.90$ and a minimum operating temperature of $-40^{\circ} \mathrm{F} /-40^{\circ} \mathrm{C}$. Driver(s) is/are UL and cUL recognized and mounted directly against the Electrical Housing to facilitate thermal transfer, held down by universal clamps to facilitate easy removal. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of $120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ or $347 \mathrm{~V}-480 \mathrm{~V}$, $50,60 \mathrm{~Hz}$. ($0-10 \mathrm{~V}$ dimmable driver is standard. Driver has a minimum of 3 KV internal surge protection. Luminaire supplied with 20 KV surge protector for field accessible installation.)

AMBER LED's

PCA (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS lamps and have a slight output in the blue spectral bandwidth. TRA (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.

FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at $140^{\circ} \mathrm{F}$. Four step sand blast and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability. Texture finish is standard.

PATENT PENDING

RZZZR-PT2 SERIEES-PLED

S P E C I F I C A T I O N S

PLED ${ }^{\text {T" }}$ MODULES

Approximate Average Lumens - 4000K
(Lumens median of all distributions)

	350 mA			525 mA				700 mA			1050mA		
	Watts	Lumens	HID Eq.										
$\mathbf{4 0}$	45	5997	$70-$ 100	66	8653	$100-$	87	10995	175	134	14647	$200-$	
$\mathbf{1 5 0}$	87	11622	$175-$	131	16736	$200-$	174	21235	400	N/A	N/A	N/A	

Spec/Order Example: RZR-PT2-LED/PLED-V-SQ/80LED-700mA/NW/277/RAL9005

S	E C / O	R D	E P	N G	N F	R M	T \\| ○ N
MODEL	OPTICS	LED MODE			VOLTAGE	FINISH	OPTIONS
MODEL	OPTICS	LED MODE			VOLTAGE	FINISH	OPTIONS
		NO. LEDs		COLOR TEMP-CCT	$\begin{aligned} & \square 120 \\ & \square 208 \\ & \square 240 \\ & \square 277 \\ & \square 347 \\ & \square 480 \end{aligned}$	STANDARD TEXTURED FINISH	
\square RZR-PT2						BLACK RAL-9005-T WHITE RAL-9003-T GREY RAL-7004-T DARK BRONZE RAL-8019-T GREEN RAL-6005-T FOR SMOOTH FINSHREPLACE SUFFX "T" WTH SUFFIX's" " (EXAMPLE: RAL-9005-S) CONSULT FACTORY FOR CUSTOM COLORS	
U.S. Architectural Lighting		660 West Avenue O, Palmadele, CA 93551 Phone (661) 233-2000 Fax (661) 233-200 www.usaltg.com					

$\begin{aligned} & \text { LED } \\ & \text { COUNT } \end{aligned}$	SOURCE TYPE	SOURCE	INITIAL LUMENS 4000 K CCT	INITIAL LUMENS 3000K CCT	INITIAL LUMENS 5000K ССT	L70 GREATER THAN (HR)	STARTING TEMP.	SYSTEM WATTS	VOLTS	MAX INPUT AMPS
40	LED	40 PLED Optical Module - 350 mA	$\begin{aligned} & 5,585- \\ & 6,408 \end{aligned}$	$\begin{aligned} & 5,306- \\ & 6,088 \end{aligned}$	$\begin{aligned} & 5,864- \\ & 6,729 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	45	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.17 \end{aligned}$
40	LED	40 PLED Optical Module-525mA	$\begin{aligned} & 8,059- \\ & 9,246 \end{aligned}$	$\begin{aligned} & 7,656- \\ & 8,784 \end{aligned}$	$\begin{aligned} & 8,462- \\ & 9,709 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	66	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.24 \end{aligned}$
40	LED	40 PLED Optical Module - 700mA	$\begin{aligned} & \text { 10,240- } \\ & 11,749 \end{aligned}$	$\begin{aligned} & 9,728- \\ & 11,162 \end{aligned}$	$\begin{aligned} & \text { 10,752 - } \\ & 12,337 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.32 \end{aligned}$
40	LED	40 PLED ${ }^{\circ}$ Optical Module - 1050mA	$\begin{aligned} & 13,642- \\ & 15,652 \end{aligned}$	$\begin{aligned} & 12,960- \\ & 14,870 \end{aligned}$	$\begin{aligned} & 14,324- \\ & 16,435 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	134	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 0.49 \end{aligned}$
80	LED	80 PLED ${ }^{\circ}$ Optical Module - 350 mA	$\begin{aligned} & 10,824- \\ & 12,419 \end{aligned}$	$\begin{aligned} & \text { 10,283-} \\ & 11,798 \end{aligned}$	$\begin{aligned} & 11,365- \\ & 13,040 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.33 \end{aligned}$
80	LED	80 PLED ${ }^{\circ}$ Optical Module - 525mA	$\begin{aligned} & 15,587- \\ & 17,884 \end{aligned}$	$\begin{aligned} & 14,808- \\ & 16,990 \end{aligned}$	$\begin{aligned} & 16,366- \\ & 18,778 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	131	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.48 \end{aligned}$
80	LED	80 PLED ${ }^{\circ}$ Optical Module - 700mA	$\begin{aligned} & 19,767- \\ & 22,680 \end{aligned}$	$\begin{aligned} & 18,779- \\ & 21,546 \end{aligned}$	$\begin{aligned} & 20,755- \\ & 23,814 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	174	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 0.63 \end{aligned}$

NOTES:

1. Max Input Amps is the highest of starting, operating, or open circuit currents
2. Lumen values for LED Modules vary according to the distribution type
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use surge suppressor supplied with luminaire. Note: Surge suppressors are considered a perishable device.
5. L70(10K) - TM-21 $6 x$ rule applied

WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

SOLID STATE AREA LIGHTING

OPTICAL HOUSING
Heavy cast low copper aluminum (A356 alloy: <0.2\% copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance < $\pm .003^{\prime \prime}$) to facilitate thermal transfer of heat to housing and cooling fins. The Optical Housing bolts to the Electrical Housing forming a unified assembly. The minimum wall thickness is .188".

ELECTRICAL HOUSING

Heavy cast low copper aluminum (A356 alloy; $<0.2 \%$ copper) assembly. Minimum wall thickness is .188". Fixture Mounting Plate affixes to mounting surface over a recessed j-box. Electrical Housing anchors on the top edge of the Mounting Plate and stainless steel recessed socket head screws tighten the Electrical Housing to the Mounting Plate from the bottom.

PLED"' OPTICAL MODULES

Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. LED optics completely seal each individual emitter to meet an IP66 rating. The asymmetric distributions, have a micro-reflector inside the refractor which re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H12 acrylic. Each LED refractor is sealed to the PCB over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. LED refractors produce Type II, III, and Type IV site/area distributions as well as other specialty asymmetric distributions. Panels are field replaceable and field rotatable in 90° increments.

LED DRIVER(S)

Constant current electronic with a power factor of $>.90$ and a minimum operating temperature of $-40^{\circ} \mathrm{F} /-40^{\circ} \mathrm{C}$. Driver (s) is/are UL and cUL recognized and mounted directly agains \dagger the Electrical Housing to facilitate thermal transfer, held down by universal clamps to facilitate easy removal. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of $120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ or $347 \mathrm{~V}-480 \mathrm{~V}$, $50,60 \mathrm{~Hz}$. ($0-10 \mathrm{~V}$ dimmable driver is standard. Driver has a minimum of 3 KV internal surge protection. Luminaire supplied with 20 KV surge protector for field accessible installation.)

LED EMITTERS

High output LED's are utilized with drive currents ranging from 350 mA to 1050 mA . 70CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.

AMBER LED's
PCA (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS lamps and have a slight output in the blue spectral bandwidth. TRA (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.

FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at $140^{\circ} \mathrm{F}$. Four step media blast and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability.

FIXTURE	A	B	C
RZRW1	${ }_{\substack{\text { chenm" } \\ \text { (22mm) }}}$	${ }_{\text {(205mm) }}^{12}$	${ }_{(152 m m)}^{60}$
RZRW1-EM		${ }_{(356 \mathrm{~mm})}^{14}$	${ }_{(6.55 \mathrm{~mm}}{ }^{6.5}$

RZR-WM1

PATENT PENDING

FIXTURE	A	B	C
RZRW2	$16^{\prime \prime}$ $(406 \mathrm{~mm})$	$122^{\prime \prime}$ $(305 \mathrm{~mm})$	$6^{\prime \prime}$ $(152 \mathrm{~mm})$
RZRW2-EM	$16^{\prime \prime}$ $(406 \mathrm{~mm})$	$14^{\prime \prime}$ $(356 \mathrm{~mm})$	6.5 E $(165 \mathrm{~mm})$

RZR-WM2

PATENT PENDING

RZR-WM3
PATENT PENDING
-
$\square \rightarrow$

'---------- LIGHTING'

RAZAR WALLMOUNT SERIES-LED

Spec/Order Example: RZR-WM2/PLED-IV/40LED-700mA/CW/277/RAL-8019-S/SF

LED COUNT	$\begin{aligned} & \text { SOURCE } \\ & \text { TYPE } \end{aligned}$	SOURCE	INITIAL LUMENS 4000K	INITIAL LUMENS 3000K	INITIAL LUMENS 5000K	L70 GREATER THAN (HR)-TM21	STARTING TEMP.	SYSTEM WATTS	VOLTS	MAX INPUT AMPS
20	LED	20 PLED ${ }^{\circledR}$ Optical Module - 350mA	$\begin{aligned} & 2,706- \\ & 2,993 \end{aligned}$	$\begin{aligned} & 2,571- \\ & 2,843 \end{aligned}$	$\begin{aligned} & 2,841- \\ & 3,143 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	22	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.08 \\ & 0.07 \end{aligned}$
20	LED	20 PLED Optical Module - 525mA	$\begin{aligned} & 3,897- \\ & 4,310 \end{aligned}$	$\begin{aligned} & 3,702- \\ & 4,095 \end{aligned}$	$\begin{aligned} & 4,092- \\ & 4,526 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	33	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.12 \\ & 0.10 \end{aligned}$
20	LED	20 PLED ${ }^{\circledR}$ Optical Module - 700mA	$\begin{aligned} & 4,942- \\ & 5,466 \end{aligned}$	$\begin{aligned} & 4,695- \\ & 5,193 \end{aligned}$	$\begin{aligned} & 5,189- \\ & 5,739 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	44	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.16 \\ & 0.13 \end{aligned}$
20	LED	20 PLED ${ }^{\circ}$ Optical Module - 1050mA	$\begin{aligned} & 6,564 \text { - } \\ & 7,260 \end{aligned}$	$\begin{aligned} & 6,236- \\ & 6,897 \end{aligned}$	$\begin{aligned} & \text { 6,892 - } \\ & 7,623 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	65	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.24 \\ & 0.19 \end{aligned}$
40	LED	40 PLED Optical Module - 350mA	$\begin{aligned} & 5,585- \\ & 6,178 \end{aligned}$	$\begin{aligned} & 5,206- \\ & 5,869 \end{aligned}$	$\begin{aligned} & 5,864- \\ & 6,487 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	43	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.16 \\ & 0.13 \end{aligned}$
40	LED	40 PLED ${ }^{\circ}$ Optical Module - 525mA	$\begin{aligned} & 8,059- \\ & 8,914 \end{aligned}$	$\begin{aligned} & 7,656- \\ & 8,468 \end{aligned}$	$\begin{aligned} & 8,462- \\ & 9,360 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	65	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.24 \\ & 0.19 \end{aligned}$
40	LED	40 PLED ${ }^{\text {® }}$ Optical Module - 700mA	$\begin{aligned} & 10,240- \\ & 11,327 \end{aligned}$	$\begin{aligned} & 9,728- \\ & 10,761 \end{aligned}$	$\begin{aligned} & 10,752- \\ & 11,893 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.32 \\ & 0.26 \end{aligned}$
40	LED	40 PLED ${ }^{\circ}$ Optical Module - 1050mA	$\begin{aligned} & 13,642- \\ & 15,089 \end{aligned}$	$\begin{aligned} & 12,690- \\ & 14,335 \end{aligned}$	$\begin{aligned} & 14,324- \\ & 15,843 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	129	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.47 \\ & 0.38 \end{aligned}$
60	LED	60 PLED ${ }^{\circ}$ Optical Module - 350mA	$\begin{aligned} & 8,118- \\ & 8,979 \end{aligned}$	$\begin{aligned} & 7,712- \\ & 8,530 \end{aligned}$	$\begin{aligned} & 8,524 \text { - } \\ & 9,428 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	65	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.24 \\ & 0.19 \end{aligned}$
60	LED	60 PLED ${ }^{\circ}$ Optical Module - 525mA	$\begin{aligned} & 11,690- \\ & 12,930 \end{aligned}$	$\begin{aligned} & 11,106- \\ & 12,284 \end{aligned}$	$\begin{aligned} & 12,275- \\ & 13,577 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	98	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.36 \\ & 0.29 \end{aligned}$
60	LED	60 PLED Optical Module - 700mA	$\begin{aligned} & 14,825- \\ & 16,398 \end{aligned}$	$\begin{aligned} & 14,084- \\ & 15,578 \end{aligned}$	$\begin{aligned} & 15,566- \\ & 17,218 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	131	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 0.47 \\ & 0.38 \end{aligned}$
60	LED	60 PLED Optical Module - 1050mA	$\begin{aligned} & 19,691- \\ & 21,780 \end{aligned}$	$\begin{aligned} & 18,706- \\ & 20,691 \end{aligned}$	$\begin{aligned} & 20,676- \\ & 22,869 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	193	$\begin{aligned} & 120 \\ & 277 \\ & 347 \end{aligned}$	$\begin{aligned} & 1.61 \\ & 0.70 \\ & 0.56 \end{aligned}$

NOTES:

1. Max Input Amps is the highest of starting, operating, or open circuit currents
2. Lumen values for LED Modules vary according to the distribution type
3. System Watts includes the source watts and all driver components.
4. Fuse value should be sufficient to protect all wiring components.
5. L7O(10K) - TM-21 $6 x$ rule applied

L70(10K) - Calculated $=244,000 @ 700 \mathrm{~mA}$
$=102,000 @ 1050 \mathrm{~mA}$
WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

SLV4

BIRCHWOOD a LEVITON. VANESSA LED
 lighting company
 Wet Location Luminaire
 Distributed Array LED

Ceiling Mount | Wall Mount | CSS

VANESSA combines high-end architectural styling with precision engineering to create a strong, elegant wet-location luminaire designed to complement wet exterior or interior installations.

Weather-sealing prevents water and moisture from entering the lens, power entry points and end-caps. Constructed of heavy gauge extruded aluminum, precision machined smooth end-caps and extruded acrylic lenses, VANESSA is built to last while withstanding elements associated with wet-location applications.

VANESSA is available as LED and single or double T5 or T 8 , or single T 5 HO linear fluorescent lamps. $2^{\prime}, 3^{\prime}, 4^{\prime}$, 6^{\prime} and 8^{\prime} nominal lengths are standard, continuous runs are available.

UL and c-UL listed for wet locations.

Made in the USA

LED Light Engine System

LED Light Engines are available as HLO (High Lumen Output) and SLO (Standard Lumen Output) providing efficient illumination. CLO (Custom Lumen Output) allows for end user specified lumen output or tailored wattage consumption for certain models. Consult factory for details.

Dimming

Dimming is available with a variety of control protocols and options. Consult factory for availability and specifications.

Acrylic Lens Options

(FW) Frosted White impact resistant extruded lens.

Fixture Length

Fixtures are available in $2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$ and 8^{\prime} nominal lengths. Continuous run mounting available featuring water-sealed gaskets within knock-outs for maintaining WL rating. See installation section for more details.

Custom and Mods

We proudly specialize in manufacturing custom and modified luminaires and have the ability to modify most of our standard fixtures. Please contact factory with any inquiries.

Mounting Options

(CSS) Cable Suspension System field adjustable $1 / 16^{\prime \prime}$ aircraft cable, (WM) Wall Mount, (REC) Recessed or (CM) Ceiling Mount.

Finishes

(SL) Silver Matte Texture, (MW) Matte White, or (FB) Flat Black. Other powder coat finishes available. Consult factory for details.

VANESSA LED
 Wet Location Luminaire Distributed Array LED

CSS Options

Cable Length	Power Cord Color
$36-36^{\prime \prime}$ (standard)	W - White
$72-72^{\prime \prime}$	B - Black
$120-120^{\prime \prime}$	G - Gray (standard)

NOTES

1 specify length in nominal feet
2 contact factory for custom finish
3 see options for non-standard selections
4 available for EB, D1, D10 drivers only
5 EM's are remote mounted along with the test switch in a dry location, consult factory for more info
6 6' \& 8' lengths are made up with (2) 3' fixtures or (2) 4' fixtures respectively
7 direct (DR) distribution only

VANESSA is rated for operation with ambient temperatures not to exceed $40^{\circ} \mathrm{C}$. Use specification code "HAT" for applications where ambient will be between 40° and $45^{\circ} \mathrm{C}$. The "HAT" option is a thermistor which will control internal temperatures so as not to exceed internal device maximum temperature. At certain temperature thresholds, fixture will dim light output to keep internal temperatures within the acceptable range. Available for EB, D1 and D10 drivers only, consult factory for more details.
*see option sheet for details

LED

VAN-LED-400 (4000K FW lens)
SLO - $89.4 \mathrm{~lm} /$ watt delivered @ $4.4 \mathrm{w} / \mathrm{ft}$ consumed watts, $393 \mathrm{~lm} / \mathrm{ft}$.
HLO - $84 \mathrm{Im} /$ watt delivered @ $9 \mathrm{w} / \mathrm{ft}$ consumed watts, $756 \mathrm{Im} / \mathrm{ft}$.
CLO - refer to CLO Calculator
LED supplement info

Transportation Impact Report

W. Edward Balmer Elementary School Northbridge, MA

January 26, 2018
Prepared for:
Dore \& Whittier Architects, Inc. 260 Merrimac Street, Bldg. 7

Newburyport, MA 01950

Submitted by:
Nitsch Engineering
2 Center Plaza, Suite 430
Boston, MA 02108

Nitsch Project \#12260.

TABLE OF CONTENTS

OPERATIONS ANALYSIS31
7.1 Level of Service Criteria 31
7.2 Capacity Analysis 31
7.32017 Existing Capacity Analysis 32
7.42024 No-Build Capacity Analysis 33
7.5 Traffic Signal Warrant 34
7.6 Sight Distance 35
7.72024 Build Capacity Analysis - Option A 37
7.82024 Build Capacity Analysis - Option B 38
7.9 Parking 39
8 CONCLUSIONS AND RECOMMENDATIONS 40
8.1 Conclusions. 40
8.2 Recommendations 41

LIST OF TABLES

Table 1 - Balmer School Drop-Off/Pick-Up Quantity 11
Table 2 - Crash Summary 16
Table 3 - Automatic Traffic Recorder (ATR) Summary 17
Table 4 - Vehicle Travel Speeds 18
Table 5 - Proposed Trip Generation - Option A 23
Table 6 - Proposed Trip Generation - Option B 27
Table 7 - Level of Service Criteria 31
Table 8 - Level of Service Summary - 2017 Existing Conditions 32
Table 9 - Level of Service Summary - 2024 No - Build Conditions 33
Table 10 - Sight Distance Criteria 35
Table 11 - Proposed Sight Distance Evaluation 36
Table 12 - Level of Service Summary - 2024 Build Option A Conditions 37
Table 13 - Level of Service Summary - 2024 Build Option B Conditions 38
Table 14 - Proposed Parking Summary 39
LIST OF FIGURES
Figure 1: Locus Map 4
Figure 2: Existing Conditions. 5
Figure 3: Intersection Locations 9
Figure 4: AM Drop-Off Queue 12
Figure 5: PM Pick-Up Queue 13
Figure 6: Parking Lot Overview 15
Figure 7: 2017 Existing Traffic Volumes 19
Figure 8: 2024 Future Volumes - No Build 21
Figure 9: Trip Distribution - Option A 24
Figure 10: Trip Assignments - Option A 25
Figure 11: 2024 Future Volumes - Option A Build 26
Figure 12: Trip Distribution - Option B 28
Figure 13: Trip Assignments - Option B 29
Figure 14: 2024 Future Volumes - Option B Build 30

INTRODUCTION

Nitsch Engineering has been retained by Dore \& Whittier Architects to prepare a qualitative assessment of safety, traffic circulation, and traffic access/egress, associated with the feasibility study and schematic design for the proposed W. Edward Balmer (Balmer) Elementary School reconstruction project located in Northbridge, Massachusetts.

The Project includes construction of a new Balmer Elementary School building and grounds on the site of the existing school, located at 21 Crescent St in Northbridge. The existing Balmer School is an elementary educational institution with an enrollment of 569 students in second through fourth grades, and approximately 49 staff.

The following four (4) potential options are being considered:

1. Option B2, Grades $2-4$, New Construction at the Rear of the Site (510 enrollment and approximately 49 staff)
2. Option C2, Addition/Renovation of the existing Balmer School, keeping the Academic Wing (1,030 enrollment K-5, plus $80 \mathrm{PK}, 1,110$ total and approximately 80staff)
3. Option C3, Grades PK-5, New Construction at the Rear of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total and approximately 80 staff)
4. Option C5, Grades PK-5, New Construction, Front of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total and approximately 80 staff)

The evaluation will be based on the two (2) enrollment options of A with 510 and B with 1,110 students, because all four (4) options have identical access and egress points. In Option A, the existing school will be replaced in kind with a new school. In Option B., the new larger school will combine Balmer and Northbridge Elementary Schools.

The report describes the project area, presents traffic counts (taken in 2017), and evaluates the existing facilities and the site improvements to support the development alternatives by analyzing existing and future traffic operating efficiency. The data is used to determine the traffic circulations, overall operations, and to evaluate the traffic impacts of the proposed school.

The standards used for analysis conform to the 2009 edition of the Manual on Uniform Traffic Control Devices ${ }^{1}$ (MUTCD), 2009 edition and the 2010 edition of the Highway Capacity Manual.

The following conditions are analyzed in this report:

- Existing Conditions 2017;
- Future 2024 No-Build;
- Future 2024 Build based on enrollment option of 510 students; and
- Future 2024 Build based on enrollment option of 1,110 students.

Figure 1 is the Locus Map showing the proximity of the new school and the surrounding roadway network. Figure 2 shows the existing conditions of the school site.

[^1]

Figure 1: Locus Map

W. Edward Balmer and Northbridge Elementary School Northbridge, Massachusetts

Figure 2: Existing Conditions

W. Edward Balmer Elementary School

 Northbridge, Massachusetts
2.1 Study Area Roadways

To examine the existing conditions, we studied and collected data at the following roadways:

1. Main Street,
2. North Main Street,
3. Crescent Street, and
4. Lake Street,

Main Street

Main Street is classified by the Massachusetts Department of Transportation (MassDOT) as a Rural Major Collector and runs in the east-west directions between the Worcester-Providence Turnpike (Route 146) in Northbridge and Hill St in Northbridge. The posted speed limits along the roadway in the study area are 30 miles per hour. The land use is primarily commercial within the study area. The roadway is within the jurisdiction of the Town of Northbridge.

North Main Street

North Main Street is classified by MassDOT as a Rural Major Collector and runs in the southeast-northwest directions between Goldthwaite Road and Main Street in Northbridge. The posted speed limits along the roadway in the study area are 25 miles per hour. The land use is primarily residential. The roadway is within the jurisdiction of the Town of Northbridge.

Crescent Street

Crescent Street is classified by MassDOT as a local roadway and runs in the northeast-southwest directions between Mason Road and North Main Street in Northbridge. The roadway within the study area is designated as School Zone, with 20 miles per hour posted speed limits. The land use is primarily residential. The roadway is within the jurisdiction of the Town of Northbridge.

Lake Street
Lake Street is classified by MassDOT as a local roadway and runs in the north-south directions between Crescent Street and Main Street in Northbridge. The roadway within the study area does not have a posted speed limit. The roadway is within the jurisdiction of the Town of Northbridge.

2.2 Study Area Intersections

To examine the existing conditions, we included the following intersections in the study area. The intersection locations are shown in Figure 3.

1. Main Street at Lake Street
2. Main Street at North Main Street
3. North Main Street at Crescent Street,
4. Crescent Street at Arcade Street,
5. Crescent Street at Balmer Elementary School Driveway, and
6. Crescent Street at Lake Street.

Main Street at Lake Street
Main Street intersects Lake Street at a three-way unsignalized intersection with Main Street approaching from the east and west and Lake Street approaching from the north. Main Street operates freely with no control. Lake Street operates with stop control.

From both approaches Main Street is a two-way roadway with one travel lane in each direction separated with double yellow centerlines, and is approximately 30 feet wide. Approaching from the north Lake Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Continuous concrete sidewalks are present on both sides of each approach. A crosswalk is present across Main Street.

Main Street at North Main Street

Main Street and North Main Street intersect as a three-way unsignalized intersection, with Main Street approaching from the west and east and North Main Street approaching from northwest. Main Street operates freely with no control. North Main Street operates with stop control.

From both approaches, Main Street is a two-way roadway with one lane in each direction, separated by double yellow centerline and is approximately 40 feet wide. Approaching from northwest, North Main Street is a twolane roadway separated with a double yellow center line. At the intersection, North Main Street is separated with a raised concrete median, and is approximately 72 feet wide. Cement concrete sidewalks are present along both sides of Main Street and North Main Street on the approach to the intersection. Crosswalks are present across North Main Street.

North Main Street at Crescent Street

North Main Street, Crescent Street and C Street intersect at a four-way unsignalized intersection, with North Main Street approaching from southeast and northwest, Crescent Street approaching from the northeast, and C Street approaching from the southwest. Crescent Street and C Street operate with stop control. North Main Street operates freely with no control.

From both approaches North Main Street is a two-way roadway with one lane in each direction, separated by double yellow centerline. Approaching the intersection, the North Main Street is approximately 27 feet wide. Approaching the intersection Crescent Street and C Street are two-way roadways with one lane in each direction without separation and approximately 25 feet wide at the intersection. Cement concrete sidewalk and crosswalks are present on all sides of the intersection. Crosswalks are present across all approaches.

Crescent Street intersects Arcade Street at a three-way unsignalized intersection with Crescent Street approaching from the northeast and southwest and Arcade Street approaching from the southeast. Crescent Street operates freely with no control. Arcade Street operates with stop control.

From both approaches, Crescent Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Approaching from southeast, Arcade Street is approximately 25 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Continuous cement concrete sidewalks are present on both sides of Crescent Street. Continuous bituminous concrete sidewalks are present on both sides of Arcade Street. A Crosswalk is present across Arcade Street approach.

Crescent Street at Balmer Elementary School Driveway

Crescent Street intersects the Balmer Elementary School Driveway at a three-way unsignalized intersection with Crescent Street approaching from the northeast and southwest and the driveway approaching from the northwest. Crescent Street operates freely with no control. The Balmer Elementary School Driveway operates with stop control.

From both approaches, Crescent Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Approaching from northwest, The Balmer Elementary School Driveway is approximately 30 feet wide. and contains one travel lane in each direction. There are no pavement markings separating the lanes. Continuous cement concrete sidewalks are present on both sides of Crescent Street. A continuous bituminous concrete sidewalk is present on easterly side of the driveway. Crosswalks are present across the Balmer Elementary School Driveway and the southwest Crescent Street approach leg.

Crescent Street at Lake Street

Crescent Street intersects Lake Street at a three-way unsignalized intersection with Crescent Street approaching from the northeast and southwest and Lake Street approaching from the southeast. Crescent Street operates freely with no control. Lake Street operates with stop control.

From both approaches Crescent Street is approximately 30 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Lake Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Cement concrete sidewalk is present on both sides of Crescent Street and the east side of Lake Street. Crosswalks are present across the Lake Street.

Figure 3: Intersection Locations

W. Edward Balmer Elementary School

 Northbridge, Massachusetts
2.3 Balmer Elementary School Site Visit

Nitsch Engineering conducted two site visits (Tuesday September 12, and Wednesday September 13, 2017) to observe the site circulation associated with the weekday morning drop-off, weekday afternoon pick-up and general queue lengths around both Balmer Elementary and Northbridge Elementary School sites. The weekday morning drop-off observation occurred during clear conditions with a temperature of approximately 72 degrees. The weekday afternoon pick-up activity occurred during clear conditions with a temperature of approximately 82 degrees.

2.4 Balmer Elementary School Site Access and Egress

Balmer Elementary School is located at 21 Crescent St, North of Main Street, in Northbridge. The School is accessed from Crescent Street. The access and egress to the school (parental drop-off and pick-up, as well as the teachers and staff) occurs from Crescent Street through the school driveway to the parking lot. The school driveway is approximately 590 feet long and 40 feet wide. An 8 -foot wide sidewalk is present at the easterly side of the driveway, which connects the sidewalk along Crescent Street to Balmer Elementary School.

2.5 Balmer Elementary School Traffic Circulation and Pick-up/Drop-off

Figures 4 and 5 graphically depicts the queuing activity during the weekday morning drop-off and afternoon pick-up periods at the existing Balmer Elementary School.

Existing Morning Drop-off Circulation:

Parents arrive at the school through Crescent Street from 7:45 AM through 8:30 AM, and enter the two drop off lines at the fenced in play lot. The children are greeted by a couple of the teachers who assist them when exiting the cars. Some parents also park at the school lot and walk their children to the school entrance. A total of 112 vehicles entered the school parking lot, of which 74 parental drop-offs were observed during morning. A total of 17 buses and one mini-bus/Special Ed bus drop off students at the school. At the time of observation, we did not notice any bus and vehicular traffic conflict occurring. 71 vehicles entering the site were traveling southwest-bound on Crescent Street while 41 vehicles were traveling eastbound. 41 vehicles exiting the site were observed traveling eastbound on Crescent Street while 33 vehicles were observed traveling westbound.

Existing Afternoon Pick-up Circulation:

The afternoon pick-up period occurs approximately from 1:45 PM to 2:45 PM. Parents start arriving from Crescent Street around 1:45 PM, and park at the fenced in play lot, southeast of the school, and wait for their children. We observed 63 vehicles parked at this lot. At the time of observation, we did not notice any parental vehicle parking extend out of the fenced area. All the parents walk to the school to collect their children at the Parent Pickup door. Once they have collected their children they leave via Crescent Street, and normal traffic returns around 2:45 PM. 45 vehicles entering the site were traveling westbound on Crescent Street while 18 vehicles were traveling eastbound. 42 vehicles exiting the site were observed traveling eastbound on Crescent Street while 44 vehicles were observed traveling westbound.

Table 1 quantifies the parent and bus drop-off/pick-up totals for the school during the site visit.

Table 1 - Balmer School Drop-Off/Pick-Up Quantity

Type	Parent		Bus		Mini-Bus/SP. ED	
Time	Drop-Off	Pick-Up	Drop-Off	Pick-Up	Drop-Off	Pick-Up
7:45-8:00	2		3			
$8: 00-8: 15$	40		11			
8:15-8:30	32		3		1	
1:45-2:00		4		1		
$2: 00-2: 15$		20		2		
$2: 15-2: 30$		27		4		
$2: 30-2: 45$		12		10		1
Total	74	63	17	17	1	1

Figure 4: AM Drop-Off Queue

W. Edward Balmer Elementary School

 Northbridge, Massachusetts

Figure 5: PM Pick-Up Queue

W. Edward Balmer Elementary School

 Northbridge, Massachusetts
2.6 Balmer Elementary School Parking Supply and Demand

Nitsch Engineering performed a parking supply and demand count on September 12, 2017. The utilization of the lot was taken at 10:00 AM.

As shown on Figure 6, a total of 91 parking spaces were counted in four sections within the Balmer Elementary School, including 3 of which are accessible spaces. This meets the Architectural Access Board (AAB) Code of Massachusetts Regulations (521 CMR) for the required number of accessible parking spaces. The 3 accessible spaces were not utilized. The overall lot utilization was 74%.

Nitsch Engineering used the Institute of Transportation Engineers (ITE) publication Parking Generation, 4th Edition to estimate the parking demands for the two future school options (Grades 2-4 with 510 students and staff of 49 , or PK-5 with 1110 students and staff of 80).

Parking generation rates for the Elementary School were based on Land Use Code (LUC) 520 (Elementary School). We used the Number of Students as the independent variable to base the ITE parking generation rates.

Based on the ITE parking generation rates, the parking demand for a school with a population of 510 is 88 parking spaces.

Based on the ITE parking generation rates, the parking demand for a school with a population of 1110 is 189 parking spaces.

Figure 6: Parking
W. Edward Balmer Elementary School Northbridge, Massachusetts

3.1 Crash Data

Nitsch Engineering reviewed the crash data available from MassDOT for the three (3) most recent years available - 2013 to 2015 - for the study intersections. A summary of the crashes, including the severity, and the manner of collision are shown in Table 2.

Table 2-Crash Summary

Location	Number of Crashes			Severity				Manner of Collision					Percent During	
	Year	Total Crashes	Average	PD ${ }^{\text {a }}$	$\mathrm{Pl}^{\text {b }}$	NR ${ }^{\text {c }}$	$\mathrm{F}^{\text {d }}$	$\mathrm{A}^{\text {e }}$	REf	$\mathrm{HO}^{\text {² }}$	Other ${ }^{\text {h }}$	Incl. Ped- Bike ${ }^{j}$	Peak Hours ${ }^{k}$	Wet/lcy Conditi ons
N. Main St at Crescent St	2013	0	1.00	0	0	0	0	0	0	0	0	0	0\%	0\%
	2014	1		0	1	0	0	1	0	0	0	0	100\%	0\%
	2015	2		2	0	0	0	1	0	0	1	0	100\%	0\%
Crescent St at Arcade St	2013	0	0.67	0	0	0	0	0	0	0	0	0	0\%	0\%
	2014	0		0	0	0	0	0	0	0	0	0	0\%	0\%
	2015	2		2	0	0	0	1	0	0	1	0	50\%	50\%
Main St at N. Main St	2013	1	1.33	1	0	0	0	1	0	0	0	0	100\%	0\%
	2014	1		0	1	0	0	0	1	0	0	0	0\%	100\%
	2015	2		1	1	0	0	1	0	0	1	0	0\%	50\%
Main St at Lake St	2013	0	0.33	0	0	0	0	0	0	0	0	0	0\%!	0\%
	2014	0		0	0	0	0	0	0	0	0	0	0\%	0\%
	2015	1		1	0	0	0	0	0	0	1	0	0\%	0\%
Crescent St at Lake St	2013	0	0.00	0	0	0	0	0	0	0	0	0	0\%	0\%
	2014	0		0	0	0	0	0	0	0	0	0	0\%	0\%
	2015	0		0	0	0	0	0	0	0	0	0	0\%	0\%
Crescent St at School Dr	2013	1	0.33	1	0	0	0	1	0	0	0	0	100\%	100\%
	2014	0		0	0	0	0	0	0	0	0	0	0\%	0\%
	2015	0		0	0	0	0	0	0	0	0	0	0\%	0\%
Total	ALL	11	3.67	8	3	0	0	6	1	0	4	0	55\%	36\%

${ }^{\text {ap }}$ Property Damage Only; ${ }^{\text {b }}$ Personal Injury Only (non-Fatal Injury); ${ }^{\circ}$ Not Reported; ${ }^{\mathrm{d}}$ Fatality; ${ }^{\mathrm{e}}$ Angle; ${ }^{\mathrm{f}}$ Rear end; ${ }^{\mathrm{q}} \mathrm{Head}$ on; ${ }^{\mathrm{h}}$ Sideswipe, opposite direction;
sideswipe, same direction, single vehicle crash, rear-to-rear, not reported, unknown, etc.; Includes pedestrian or cyclist; koccurred between 7-9am or 4-6pm

A total of 11 crashes were reported within the study areas for the six intersections from 2013 to 2015. In terms of severity, eight of the crashes involved property damage only and three reported personal injury. In terms of manner of collision, six of the crashes were angle collisions, one was a rear-end crash, and four were of other type. Approximately 55\% of the crashes occurred during the peak hours of 7:00 to 9:00 AM or 4:00 to 6:00 PM and 36% occurred during wet/icy conditions. Analyzing the crash data, as most crashes were of angle or rearend type, the crashes were most likely caused by driver carelessness or inattentiveness.

A factor in determining overall safety of an intersection is to calculate the crash rate by using MassDOT Crash Rate worksheets. The rate at an intersection can be compared to the average for its district and statewide.

The crash data and crash rates are summarized in Appendix A-3.

EXISTING TRAFFIC CONDITIONS

4.1 2017 Traffic Count Data

Automatic Traffic Recorder (ATR) Data
Precision Data Industries, LLC (PDI) of Berlin, Massachusetts was retained by Nitsch Engineering to conduct 48-hour Automatic Traffic Recorder (ATR) vehicle traffic counts throughout the study area; from Tuesday, November 28 to Wednesday, November 29, 2017 (Table 3). A copy of the raw traffic count data is included in Appendix A-1.

Table 3 - Automatic Traffic Recorder (ATR) Summary

Turning Movement Count (TMC) Data

PDI collected Turning Movement Counts (TMC) data for the study area intersections near the Balmer Elementary School from Tuesday, November 28 to Wednesday, November 29, 2017 from 7:00 AM to 9:00 AM and 1:30 PM to 3:30 PM to capture both morning and afternoon peak periods for the school. The TMC data included bicycle and pedestrian counts. The peak hours within the study area were established as 7:00 AM to 8:00 AM during the weekday morning period and 2:00 PM to 3:00 PM during the afternoon period. The 2017 Existing Traffic Volumes are shown in Figure 7.

Vehicle Travel Speeds

PDI measured vehicle travel speeds at the ATR locations at the time of the traffic count. The 85th percentile speed, meaning the speed at which 85% of the vehicles are at or below, is noted because of its importance in determining appropriate roadway speed limits and for calculating required sight distance. The speed data is shown in Table 4.

Table 4 - Vehicle Travel Speeds

LOCATION	POSTED SPEED $\left(\right.$ MPH $\left.^{\mathbf{a}}\right)$	85th PERCENTILE SPEED $\left(\right.$ MPH $\left.^{\mathbf{a}}\right)$
North Main Street north of Main Street		
\quad Northbound	30	37
Southbound	30	37
Crescent Street and School Driveway		
\quad Westbound	20	30
\quad Eastbound	20	28
Main Street west of Water Street	30	41
\quad Westbound		
\quad Eastbound	30	42
a $=$ Miles per hour		
Note: 85th Percentile Speeds were averaged between the full two days of data collected		

4.2 Seasonal Adjustment

Nitsch Engineering researched data from MassDOT to establish if any seasonal adjustment to the traffic counts was necessary. We used MassDOT's 2013 Weekday Seasonal Adjustment Factors, which is the latest data set available. The data compares monthly traffic volumes from different types of roadways across the Commonwealth to compare the traffic volumes from each individual month to the annual average. During the month of September on urban arterials and collectors in this area, traffic volumes are approximately 7% higher than an average month. Additionally, the counts were performed while school was in full session, so the traffic counts represent the average condition with respect to traffic within the study area. To be conservative, we made no adjustment to the collected volumes. The Weekday Seasonal Adjustment Factors are included in Appendix A-2.

Figure7: 2017 Existing Volumes
W. Edward Balmer Elementary School Northbridge, Massachusetts

FUTURE NO-BUILD TRAFFIC CONDITIONS

Nitsch Engineering used the 2017 existing traffic volumes as the baseline for projecting traffic volumes for the chosen seven-year design horizon to the 2024 future no-build condition. To determine the future 2024 No-Build condition, the following steps are included:

- Project existing 2017 traffic volumes seven years in the future to the horizon year (2024) using an annual background traffic growth factor;
- Add traffic volumes associated with any planned developments that may impact the study area; and
- Analyze the study area location to determine future operational statistics.

5.1 Background Growth

Nitsch Engineering used the previous 10-year data from MassDOT count station \#3192, located on Hill Street approximately 1.7 miles north of Main Street to calculate the background traffic growth. We used an annual background traffic growth factor of 1%, which is also consistent with recent MassDOT projects in eastern Massachusetts.

5.2 Planned Development

Nitsch Engineering contacted the Town of Northbridge to establish if there are any planned development projects in the vicinity of the study that would add additional trips in the near future. Per the Town of Northbridge, there are no new planned developments in the vicinity of Balmer Elementary School.

5.3 No-Build Traffic Volumes

The 2024 No-Build Traffic Volumes are shown in Figure 8 and are derived by applying the compounded traffic growth rate of 1% per year over the seven-year design horizon to project the 2024 traffic volumes.

Figure 8: 2024 Future Volumes - No Build
W. Edward Balmer Elementary School Northbridge, Massachusetts

6

 FUTURE CONDITIONSNitsch Engineering performed a design year traffic analysis to compare existing traffic operations with the proposed conditions of constructing a new Balmer Elementary School building and grounds on the existing site based on the two enrollment options of 510 and 1,110 students.

Sketch plans of the four redevelopment options for constructing a new Balmer Elementary School on the existing site are shown in Appendix A-4. The sketch plans show the proposed driveway locations of the school on an existing base map with the site location and outline.

The proposed school options will provide many enhancements to traffic circulations and controls such as a new egress to North Main Street, providing an extended parent queue on site, separation of cars and buses, providing a dedicated delivery access and increased parking.

6.1 Proposed School Access and Egress, Circulation, Bus and Parent Pick-Up/Drop-Off

The proposed four development options for constructing a new Balmer Elementary School on the existing site will have identical access and egress points. The new School (regardless of the option) will continue to be accessed from Crescent Street now using two driveways. The access and egress to the school (parental dropoff and pick-up, as well as teachers and staff) will occur from the new driveway opposite Lake Street to the circular driveway at the new main entrance. The existing school driveway will also be used for pre-kindergarten parental drop-off and pick-up as well as access to the parking lots.

The bus and delivery traffic will arrive through the new driveway opposite Lake Street. The bus drop-off/pick-up will occur at the designated bus lane located south of the school.

A new one-way driveway will also allow vehicular egress to North Main Street.

6.2 Trip Generation for New School with 510 Student Enrollment Option (Option A)

Nitsch Engineering used the Number of Students as the independent variable to base the trip generation rates. The existing school enrolls 569 students with 55 teachers and staff. The enrollment at the new school will be 510 students for $2^{\text {nd }}$ through $4^{\text {th }}$ grade, and approximately the same number of teachers and staff as there are currently. This means a reduction in school enrollment. To be conservative, we have used the existing enrollment data for our analysis.

Table 5 summarizes vehicle trips generated by the proposed school. The vehicle trips include teachers and staff at the new school.

Table 5 - Proposed Trip Generation - Option A

TIME PERIOD		
EXISTING		
	ENTERING	130
	EXITING	92
	TOTAL	222
$\mathbf{P M}$	ENTERING	81
	EXITING	104
	TOTAL	185

Trip Distribution, and Assignment - Option A

The trips to/from the proposed Balmer Elementary School were distributed and assigned based on the existing travel patterns and logical travel routes, which are based on the existing roadway network both within the Town of Northbridge and the surrounding region.

To properly assess the effect of trips to/from the proposed Balmer Elementary School, the proposed generated drop-off and pick-up trips (Table 6) were assigned to the network. The Trip Distribution Percentages specific to the proposed Balmer Elementary School are shown in Figure 9.

The resultant trip assignment volumes for both the weekday morning and weekday afternoon peak hours were calculated by multiplying the trip distribution by the trip generation from Table 6, and are shown in Figure 10 for the weekday morning and the weekday afternoon peak hours.

Proposed 2024 Build Volumes - Option A

For the proposed Balmer Elementary School, the corresponding trip assignment volumes were balanced based on the proposed access and egress to the school, and redistributed to yield the 2024 Build -Option A Volumes. The 2024 Future Build - Option A Volumes for the proposed Balmer Elementary School are shown in Figure 11.

Figure 9: Trip Distribution - Option A

W. Edward Balmer Elementary School

 Northbridge, Massachusetts

Figure 10: Trip Assignment - Option A

W. Edward Balmer Elementary School

 Northbridge, Massachusetts

Figure 11: 2024 Future Volumes - Build Option A
W. Edward Balmer Elementary School Northbridge, Massachusetts

6.3 Trip Generation for New School with 1110 Student Enrollment Option (Option B)

Nitsch Engineering used the Number of Students as the independent variable to base the trip generation rates. The existing school enrolls 569 students with 55 teachers and staff. The enrollment at the new school will be 1110 students for pre-kindergarten through $5^{\text {th }}$ grade, and approximately 80 teachers and staff. This means that the school enrollment will double, or grow by approximately 100%. The proposed school trip generation was calculated by increasing the existing trips entering and exiting the school by 100% to present a conservative analysis of the School Project. Table 6 summarizes vehicle trips generated by the existing and proposed school.

Table 6 - Proposed Trip Generation - Option B

TIME PERIOD		EXISTING	FUTURE VEHICLE TRIPS BASED ON TRAFFIC COUNTS
$\mathbf{A M}$	ENTERING	130	260
	EXITING	92	184
	TOTAL	222	444
$\mathbf{P M}$	ENTERING	81	162
	EXITING	104	208
	TOTAL	185	370

Table 6 shows that the proposed Balmer Elementary School would result in approximately 222 additional entering and exiting trips during morning drop-off, and approximately 185 additional entering and exiting trips during afternoon pick-up. The increase in vehicle trips includes teachers and staff at the new school.

Trip Distribution, and Assignment - Option B

The trips to/from the proposed Balmer Elementary School were distributed and assigned based on the existing travel patterns and logical travel routes, which are based on the existing roadway network both within the Town of Northbridge and the surrounding region.

To properly assess the effect of trips to/from the proposed Balmer Elementary School, the proposed generated drop-off and pick-up trips were assigned to the network. The Trip Distribution Percentages specific to the proposed Balmer Elementary School are shown in Figure 12.

The resultant trip assignment volumes for both the weekday morning and weekday afternoon peak hours were calculated by multiplying the trip distribution by the trip generation from Table 7, and are shown in Figure 13 for the weekday morning and the weekday afternoon peak hours.

Proposed 2024 Build Volumes - Option B

For the proposed Balmer Elementary School, the corresponding trip assignment volumes were balanced based on the proposed access and egress to the school, and added to the 2024 No-Build Volumes to yield the 2024 Build Volumes. The 2024 Future Build - Option B Volumes for the proposed Balmer Elementary School are shown in Figure 14.

Figure 12: Trip Distribution - Option B
W. Edward Balmer Elementary School Northbridge, Massachusetts

Figure 13: Trip Assignment - Option B

W. Edward Balmer Elementary School

 Northbridge, Massachusetts

Figure 14: 2024 Future Volumes - Build Option B
W. Edward Balmer Elementary School Northbridge, Massachusetts

7

OPERATIONS ANALYSIS

7.1 Level of Service Criteria

Level of Service (LOS) is a qualitative measure describing operational conditions within a traffic stream. Six (6) LOS criteria are used to describe the quality of traffic flow for any type of facility controls. LOS A represents the best operating conditions, and LOS-F represents the worst operating conditions. Nitsch Engineering analyzed the levels of service for signalized and unsignalized intersections using Synchro 8 software, which is based on the traffic operational analysis methodology of the Highway Capacity Manual ${ }^{2}$ (HCM). Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Table 7 summarizes the relationship between LOS and average control delay for signalized and unsignalized intersections.

Table 7 - Level of Service Criteria

SIGNALIZED INTERSECTIONS		UNSIGNALIZED INTERSECTIONS		
Level of Service	Control Delay (seconds/vehicle)	Level o Volume-to	vice by acity (v/c)	Control Delay (seconds/vehicle)
		$\mathrm{v} / \mathrm{c} \leq 1.0$	v / c > 1.0	
A	0 to 10	A	F	0 to 10
B	>10 to 20	B	F	>10 to 15
C	>20 to 35	C	F	>15 to 25
D	>35 to 55	D	F	>25 to 35
E	>55 to 80	E	F	>35 to 50
F	>80	F	F	>50
Source: 2010 Highway Capacity Manual, Transportation Research Board, Washington D.C. 2010				

7.2 Capacity Analysis

Nitsch Engineering performed traffic analyses to evaluate traffic operations for the 2017 Existing Conditions, 2024 No-Build Conditions, and 2024 Build Conditions during the weekday morning and weekday afternoon peak hours at the study intersections. The analyses depict the volume-to-capacity (v/c) ratio, vehicle delay, LOS, and the 50th/95th percentile vehicle queues.

[^2]
7.3 2017 Existing Capacity Analysis

Nitsch Engineering analyzed the 2017 Existing Conditions traffic operations at the study intersections based on the existing traffic counts performed by PDI in November 2017. The Level of Service Summary is shown in Table 8. The analysis worksheets are provided in Appendix A-6.

Table 8 - Level of Service Summary - 2017 Existing Conditions

LOCATION	DIRECTION / MOVEMENT ${ }^{1}$	WEEKDAY MORNING PEAK HOUR					WEEKDAY EVENING PEAK HOUR				
		V/C ${ }^{2}$	DELAY ${ }^{3}$	LOS 4	$\begin{gathered} 50^{\text {th }} \\ Q^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & Q^{6} \end{aligned}$	V/C ${ }^{2}$	DELAY ${ }^{3}$	LOS 4	$\begin{gathered} 50^{\text {th }} \\ \mathrm{Q}^{5} \\ \hline \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & \mathrm{Q}^{6} \\ & \hline \end{aligned}$
Main St at N. Main St	Main St EB-LT	0.01	0.4	A	-	1	0.04	1.4	A	-	3
	Main St WB-TR	0.21	0.0	A	-	0	0.31	0.0	A	-	0
	N. Main St SB-LR	0.51	19.4	C	-	72	0.54	24.8	C	-	78
Main St at Arcade St	Main St EB-LT	0.02	0.6	A	-	1	0.01	0.3	A	-	1
	Main St WB-TR	0.20	0.0	A	-	0	0.29	0.0	A	-	0
	Arcade St SB-LR	0.07	12.3	B	-	6	0.05	14.4	B	-	4
Main St at Lake St	Main St EB-LT	0.03	0.8	A	-	2	0.01	0.4	A	-	1
	Main St WB-TR	0.26	0.0	A	-	0	0.35	0.0	A	-	0
	Lake St SB-LR	0.67	36.7	E	-	114	0.46	28.0	D	-	58
N. Main St at Crescent St	Ct St EB-LTR	0.13	12.1	B	-	12	0.09	12.3	B	-	7
	Crescent St WB-LTR	0.13	11.8	B	-	11	0.12	12.0	B	-	10
	N. Main St SB-LTR	0.02	0.9	A	-	1	0.02	1.1	A	-	1
	N. Main St NB-LTR	0.01	0.3	A	-	0	0.01	0.4	A	-	1
Crescent St at Arcade St	Crescent St EB-TR	0.04	0.0	A	-	0	0.04	0.0	A	-	0
	Crescent St WB-LT	0.08	9.4	A	-	6	0.04	3.7	A	-	3
	Arcade St NB-LR	0.11	5.6	A	-	9	0.02	9.3	A	-	3
Crescent St at School Dr	Crescent St EB-LT	0.03	5.2	A	-	2	0.01	2.9	A	-	1
	Crescent St WB-TR	0.09	0.0	A	-	0	0.06	0.0	A	-	0
	School Dr SB-LR	0.12	10.1	B	-	11	0.13	9.6	A	-	11
Crescent St at Lake St	Crescent St EB-TR	0.09	7.1	A	-	0	0.10	7.0	A	-	0
	Crescent St WB-LT	0.12	7.8	A	-	0	0.03	7.4	A	-	0
	Lake St NB-LR	0.10	8.0	A	-	0	0.09	7.8	A	-	0
${ }^{1}$ Volume to Capacity Ratio; ${ }^{2}$ Vehicle Delay, measured in seconds; ${ }^{3}$ Level Of Service; ${ }^{4} 50$ th Percentile Queue (in feet); ${ }^{5} 95$ th Percentile Queue (in feet) based upon 22 feet per vehicle; * = Defacto Left Lane; \# = volume exceeds capacity, queue may be longer; $m=95$ th percentile queue is metered by upstream signal; \sim $=$ Volume exceeds capacity, queue is theoretically infinite											

7.4 2024 No-Build Capacity Analysis

Nitsch Engineering analyzed the 2024 No-Build Conditions traffic operations at the study intersections (See Section 5). The Level of Service Summary is shown in Table 9. The analysis worksheets are provided in Appendix A-6.

Table 9 - Level of Service Summary - 2024 No - Build Conditions

LOCATION	DIRECTION / MOVEMENT1	WEEKDAY MORNING PEAK HOUR					WEEKDAY EVENING PEAK HOUR				
		V/C ${ }^{2}$	DELAY ${ }^{3}$	LOS ${ }^{4}$	$\begin{gathered} 50^{\text {th }} \\ \mathrm{Q}^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & \mathrm{Q}^{6} \end{aligned}$	V/C ${ }^{2}$	DELAY ${ }^{3}$	LOS ${ }^{4}$	$\begin{gathered} 50^{\text {th }} \\ \mathrm{Q}^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & \mathrm{Q}^{6} \end{aligned}$
Main St at N. Main St	Main St EB-LT	0.01	0.5	A	-	1	0.04	1.5	A	-	3
	Main St WB-TR	0.22	0.0	A	-	0	0.33	0.0	A	-	0
	N. Main St SB-LR	0.58	22.5	C	-	90	0.63	30.5	D	-	101
Main St at Arcade St	Main St EB-LT	0.02	0.6	A	-	1	0.01	0.3	A	-	1
	Main St WB-TR	0.21	0.0	A	-	0	0.31	0.0	A	-	0
	Arcade St SB-LR	0.08	12.8	B	-	7	0.06	15.2	C	-	5
Main St at Lake St	Main St EB-LT	0.03	0.8	A	-	2	0.01	0.4	A	-	1
	Main St WB-TR	0.28	0.0	A	-	0	0.35	0.0	A	-	0
	Lake St SB-LR	0.79	51.9	E	-	157	0.46	34.5	D	-	75
N. Main St at Crescent St	Ct St EB-LTR	0.15	12.7	B	-	13	0.10	12.7	B	-	8
	Crescent St WB-LTR	0.13	12.1	B	-	12	0.13	12.5	B	-	11
	N. Main St SB-LTR	0.02	1.0	A	-	1	0.02	1.1	A	-	1
	N. Main St NB-LTR	0.01	0.3	A	-	0	0.01	0.5	A	-	1
Crescent St at Arcade St	Crescent St EB-TR	0.04	0.0	A	-	0	0.04	0.0	A	-	0
	Crescent St WB-LT	0.12	5.7	A	-	10	0.04	3.5	A	-	3
	Arcade St NB-LR	0.08	9.4	A	-	7	0.02	9.3	A	-	2
Crescent St at School Dr	Crescent St EB-LT	0.03	4.9	A	-	2	0.01	2.7	A	-	1
	Crescent St WB-TR	0.9	0.0	A	-	0	0.06	0.0	A	-	0
	School Dr SB-LR	0.13	10.2	B	-	11	0.13	9.6	A	-	11
Crescent St at Lake St	Crescent St EB-TR	0.10	7.1	A	-	0	0.11	7.0	A	-	0
	Crescent St WB-LT	0.12	7.8	A	-	0	0.03	7.4	A	-	0
	Lake St NB-LR	0.10	8.0	A	-	0	0.10	7.9	A	-	0
${ }^{1}$ Volume to Capacity Ratio; ${ }^{2}$ Vehicle Delay, measured in seconds; ${ }^{3}$ Level Of Service; ${ }^{4} 50^{\text {th }}$ Percentile Queue (in feet); ${ }^{5} 95$ th Percentile Queue (in feet) basedupon 22 feet per vehicle; ${ }^{*}=$ Defacto Left Lane; \# = volume exceeds capacity, queue may be longer; $m=95$ th percentile queue is metered by upstream signal; \sim $=$ Volume exceeds capacity, queue is theoretically infinite											

7.5 Traffic Signal Warrant

To quantify if additional mitigation would be necessary at the proposed school site, based on the student population, and at the access and egress point of Crescent Street at Lake Street, we performed a Signal Warrant Analysis for both Options A and B.

We performed the warrants based on the procedures outlined in the MUTCD 2009 edition. The MUTCD indicates nine (9) separate conditions under which a traffic signal warrant can be met, and they are shown below.

1. Warrant 1: Eight-Hour Vehicular Volume;
2. Warrant 2: Four-Hour Vehicular Volume;
3. Warrant 3: Peak Hour;
4. Warrant 4: Pedestrian Volume;
5. Warrant 5: School Crossing;
6. Warrant 6: Coordinated Signal System;
7. Warrant 7: Crash Experience;
8. Warrant 8: Roadway Network; and
9. Warrant 9: Intersection Near a Grade Crossing.

Given the criteria set forth in the MUTCD and the assumptions above, the intersection of Crescent Street at Lake Street does not meet any warrants for signalization. We believe that the recommendations outlined in Section 8.2 would represent the best return on investment with regards to handling the estimated traffic to and from the new Balmer Elementary School. The Traffic Signal Warrant Analysis is included in Appendix A-5.

7.6 Sight Distance

Stopping Sight Distance (SSD) is the length of the roadway ahead that is visible to the driver and should be sufficiently long to enable a vehicle traveling at or near the design speed to stop before reaching a stationary object in its path. Stopping sight distance is the sum of the distance traversed by the vehicle from the instant the driver sights an object necessitating a stop to the instant the brakes are applied and the distance needed to stop the vehicle from the instant brake application begins.

Intersection Sight Distance (ISD) is the length of the leg of the departure sight triangle along the major road in both directions for a vehicle stopped on the minor road waiting to depart. The critical departure sight triangles for the school driveways are for traffic approaching from either the left or right for left turns from the school driveways onto Crescent Street and North Main Street. The methods for determining the sight distances needed by drivers approaching intersections are based on the same principles as stopping sight distance, but incorporate modified assumptions based on observed driver behavior at intersections.

The SSD and ISD values associated with a given design speed are shown in Table 10. The site distance evaluations for the intersection are shown in Table 11.

Table 10 - Sight Distance Criteria

DESIGN SPEED	DESIGN STOPPING SIGHT DISTANCE VALUE (SSD)	RECOMMENDED INTERSECTION SIGHT DISTANCE VALUE 2 (ISD)
(MPH)	(FT)	(FT)
15	80	170
20	115	225
25	155	280
30	200	335
35	250	390
40	305	445
45	360	500
50	425	555
55	495	610
60	570	665
65	645	720
70	730	775
75	820	830
80	910	885

Source: A Policy on Geometric Design of Highways and Streets, AASHTO, Washington DC (2011)
${ }^{1}$ Design value based on a grade of less than 3\%, a brake reaction distance predicted on a time of 2.5 seconds and a deceleration rate of $11.2 \mathrm{ft} / \mathrm{s}^{2}$
${ }^{2}$ Recommended value based on Case B1 - a stopped passenger car to turn left onto a two-lane highway with no median and grades 3% or less

The higher of the posted, or 85th percentile, speed was used to calculate the minimum sight distance to be conservative.

At the intersections of Crescent Street and the school driveways, both the SSD and ISD values meet the minimum values for turning vehicles onto Crescent Street and for both eastbound and westbound traffic on Crescent Street.

At the intersection of North Main Street and the school driveway, both the SSD and ISD values meet the minimum values for turning vehicles onto North Main Street and for both northbound and southbound traffic on North Main Street.

Table 11 - Proposed Sight Distance Evaluation

INTERSECTION	POSTED SPEED (MPH)	85th PERCENTILE SPEED (MPH)	MINIMUM (FEET) ${ }^{1,2}$	MEASURED (FEET)	OBSTRUCTION
Stopping Sight Distance:					
Crescent Street Westbound	20	30	368	>450	
Intersection Sight Distance:					
Looking to the right from Driveway Looking to the left from Driveway	20	30	345	>450	
Crescent Street at School West Driveway					
Stopping Sight Distance:					
Crescent Street EastboundCrescent Street Westbound	20	28	182	>450	
	20	30	368	>450	
Intersection Sight Distance:					
Looking to the right from Driveway	20	28	345	>450	
Looking to the left from Driveway	20	30	345	>450	
North Main Street at School North Driveway					
Stopping Sight Distance:					
North Main Street Southbound	25	35	250	600	
North Main Street Northbound	25	35	390	466	
Intersection Sight Distance:					
Looking to the right from Driveway	25	35	250	600	
Looking to the left from Driveway	25	35	390	466	
${ }^{1}$ Table 3-1. Stopping Sight Distance on Level Roadways					
${ }^{2}$ Table 9-6. Design Intersection Sight Distance - Case B1, Left Turn from Stop					

7.7 2024 Build Capacity Analysis - Option A

Nitsch Engineering analyzed the 2024 Build Conditions traffic operations at the study intersections for reconstruction of a new Balmer Elementary School on the existing site with a student population of 510 (see Section 6). The Level of Service Summary is shown in Table 12. The analysis worksheets are provided in Appendix A-6.

Table 12 - Level of Service Summary - 2024 Build Option A Conditions

LOCATION	DIRECTION / MOVEMENT ${ }^{1}$	WEEKDAY MORNING PEAK HOUR					WEEKDAY EVENING PEAK HOUR				
		$\mathrm{V} / \mathrm{C}^{2}$	DELAY ${ }^{3}$	LOS^{4}	$\begin{gathered} 50^{\text {th }} \\ Q^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & Q^{6} \end{aligned}$	$\mathrm{V} / \mathrm{C}^{2}$	DELAY ${ }^{3}$	LOS^{4}	$\begin{gathered} 50^{\text {th }} \\ Q^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & Q^{6} \end{aligned}$
Main St at N. Main St	Main St EB-LT	0.01	0.4	A	-	1	0.03	1.0	A	-	2
	Main St WB-TR	0.21	0.0	A	-	0	0.31	0.0	A	-	0
	N. Main St SB-LR	0.47	18.6	C	-	62	0.51	23.7	C	-	70
Main St at Arcade St	Main St EB-LT	0.02	0.6	A	-	1	0.01	0.3	A	-	1
	Main St WB-TR	0.21	0.0	A	-	0	0.31	0.0	A	-	0
	Arcade St SB-LR	0.08	12.8	B	-	7	0.06	15.2	C	-	5
Main St at Lake St	Main St EB-LT	0.01	0.4	A	-	1	0.01	0.3	A	-	1
	Main St WB-TR	0.25	0.0	A	-	0	0.33	0.0	A	-	0
	Lake St SB-LR	0.30	19.9	C	-	31	0.34	24.0	C	-	37
N. Main St at Crescent St	Ct St EB-LTR	0.07	12.4	B	-	5	0.06	12.1	B	-	5
	Crescent St WB-LTR	0.07	11.1	B	-	5	0.08	11.5	B	-	7
	N. Main St SB-LTR	0.02	1.0	A	-	1	0.01	0.9	A	-	1
	N. Main St NB-LTR	0.00	0.0	A	-	0	0.01	0.4	A	-	1
Crescent St at Arcade St	Crescent St EB-TR	0.03	0.0	A	-	0	0.03	0.0	A	-	0
	Crescent St WB-LT	0.03	4.2	A	-	2	0.02	2.6	A	-	1
	Arcade St NB-LR	0.03	8.7	A	-	3	0.02	8.7	A	-	1
Crescent St at School Dr	Crescent St EB-LT	0.01	2.3	A	-	1	0.01	1.7	A	-	1
	Crescent St WB-TR	0.05	0.0	A	-	0	0.04	0.0	A	-	0
	School Dr SB-LR	0.08	9.6	A	-	6	0.08	9.4	A	-	7
Crescent St at New School Dr/Lake St	Crescent St EB-LTR	0.02	2.3	A	-	1	0.01	1.4	A	-	1
	Crescent St WB-LTR	0.01	1.6	A	-	1	0.0	0.6	A	-	0
	School Dr SB-LTR	0.02	9.9	A	-	2	0.02	9.4	A	-	1
	Lake St NB-LTR	0.11	10.8	B	-	10	0.09	9.8	A	-	8
N. Main St at School Dr	N. Main St SB-T	0.13	0.0	A	-	0	0.10	0.0	A	-	0
	N. Main St NB-T	0.14	0.0	A	-	0	0.15	0.0	A	-	0
	School Dr WB-LR	0.03	9.6	A	-	2	0.03	9.8	A	-	2
$\begin{aligned} & { }^{1} \text { Volume to Capacity Ratio; }{ }^{2} \text { Vehicle Delay, measured in seconds; }{ }^{3} \text { Level Of Service; }{ }^{4} 50^{\text {th }} \text { Percentile Queue (in feet); }{ }^{5} \text { 95th Percentile Queue (in feet) based } \\ & \text { upon } 22 \text { feet per vehicle; }{ }^{*}=\text { Defacto Left Lane; \# = volume exceeds capacity, queue may be longer; } m=95 \text { th percentile queue is metered by upstream signal; } \sim \\ & =\text { Volume exceeds capacity, queue is theoretically infinite } \end{aligned}$											

7.8 2024 Build Capacity Analysis - Option B

Nitsch Engineering analyzed the 2024 Build Conditions traffic operations at the study intersections for reconstruction of a new Balmer Elementary School on the existing site with a student population of 1110 (see Section 6). The Level of Service Summary is shown in Table 13. The analysis worksheets are provided in Appendix A-6.

Table 13 - Level of Service Summary - 2024 Build Option B Conditions

LOCATION	DIRECTION / MOVEMENT ${ }^{1}$	WEEKDAY MORNING PEAK HOUR					WEEKDAY EVENING PEAK HOUR				
		$\mathrm{V} / \mathrm{C}^{2}$	DELAY ${ }^{3}$	LOS^{4}	$\begin{gathered} 50^{\text {th }} \\ Q^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & Q^{6} \end{aligned}$	$\mathrm{V} / \mathrm{C}^{2}$	DELAY ${ }^{3}$	LOS ${ }^{4}$	$\begin{gathered} 50^{\text {th }} \\ Q^{5} \end{gathered}$	$\begin{aligned} & 95^{\text {th }} \\ & Q^{6} \end{aligned}$
Main St at N. Main St	Main St EB-LT	0.02	0.9	A	-	2	0.04	1.3	A	-	3
	Main St WB-TR	0.22	0.0	A	-	0	0.31	0.0	A	-	0
	N. Main St SB-LR	0.52	21.1	C	-	74	0.55	25.9	D	-	78
Main St at Arcade St	Main St EB-LT	0.03	0.8	A	-	2	0.01	0.4	A	-	1
	Main St WB-TR	0.21	0.0	A	-	0	0.31	0.0	A	-	0
	Arcade St SB-LR	0.10	13.3	B	-	8	0.08	15.9	C	-	7
Main St at Lake St	Main St EB-LT	0.02	0.7	A	-	2	0.02	0.5	A	-	1
	Main St WB-TR	0.27	0.0	A	-	0	0.35	0.0	A	-	0
	Lake St SB-LR	0.46	25.9	D	-	58	0.55	33.7	D	-	77
N. Main St at Crescent St	Crescent St WB-LTR	0.09	13.4	B	-	7	0.08	12.7	B	-	6
	C St EB-LTR	0.10	12.0	B	-	8	0.12	12.0	B	-	10
	N. Main St SB-LTR	0.04	1.7	A	-	3	0.02	1.4	A	-	2
	N. Main St NB-LTR	0.00	0.1	A	-	0	0.01	0.3	A	-	1
Crescent St at Arcade St	Crescent St EB-TR	0.05	0.0	A	-	0	0.04	0.0	A	-	0
	Crescent St WB-LT	0.04	4.1	A	-	3	0.02	2.8	A	-	2
	Arcade St NB-LR	0.04	9.0	A	-	3	0.02	8.9	A	-	2
Crescent St at School Dr	Crescent St EB-LT	0.03	2.8	A	-	2	0.02	2.2	A	-	1
	Crescent St WB-TR	0.07	0.0	A	-	0	0.05	0.0	A	-	0
	School Dr SB-LR	0.17	10.6	B	-	15	0.17	10.2	A	-	16
Crescent St at Lake St	Crescent St EB-LTR	0.04	2.7	A	-	3	0.02	1.7	A	-	2
	Crescent St WB-LTR	0.01	1.2	A	-	1	0.0	0.3	A	-	0
	School Dr SB-LTR	0.05	10.9	B	-	4	0.04	10.0	B	-	3
	Lake St NB-LTR	0.24	13.2	B	-	23	0.16	11.0	B	-	14
N. Main St at School Dr	N. Main St SB -T	0.14	0.0	A	-	0	0.11	0.0	A	-	0
	N. Main St NB -T	0.14	0.0	A	-	0	0.16	0.0	A	-	0
	School Dr WB-LR	0.05	9.8	A	-	4	0.06	10.0	A	-	5
${ }^{1}$ Volume to Capacity Ratio; ${ }^{2}$ Vehicle Delay, measured in seconds; ${ }^{3}$ Level Of Service; ${ }^{4} 50{ }^{\text {th }}$ Percentile Queue (in feet); ${ }^{5} 95$ th Percentile Queue (in feet) based upon 22 feet per vehicle; * = Defacto Left Lane; \# = volume exceeds capacity, queue may be longer; $m=95$ th percentile queue is metered by upstream signal; $=$ Volume exceeds capacity, queue is theoretically infinite											

7.9 Parking

The School parking lot, when complete, will provide 116 striped parking spaces for Option A (248 striped parking spaces for Option B) that include 5 accessible spaces (7 accessible spaces for Option B). Based on existing parking utilization, approximately 15 spaces for visitors are planned which may be available for parental parking (40 stationary spaces for visitors are planned for Option B). This number exceeds the number of parking spaces required by the Institute of Transportation Engineers (ITE) Parking Generation for land code 520 to facilitate parental parking during drop-off and pick-up times (see Table 14). The curb at the car loop is approximately 1440 linear feet, which can accommodate an additional 72 vehicles. Option B has two drop-off areas: the Grade 1-5 car loop snakes around behind the school and is approximately 1600 linear feet, which can accommodate 80 vehicles; and PK-K drop-off curb in front of the school is approximately 290 linear feet, which can accommodate 15 vehicles.

Table 14 - Proposed Parking Summary

Option	Parking Spaces Provided	Parking Spaces Required by Institute of Transportation Engineers' Parking Generation for Land Use Code 520
	116 Striped (5 Accessible)	95
	72 Live Drop-Off	
B	248 Striped (7 Accessible)	
	95 Live Drop-Off	

8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Nitsch Engineering has been retained by Dore \& Whittier Architects to prepare a qualitative assessment of safety, traffic circulation, and traffic access/egress, associated with the feasibility study and schematic design for the proposed Balmer Elementary School reconstruction project located in Northbridge, Massachusetts.

The Project includes construction of a new Balmer Elementary School building and grounds on the site of the existing school, located at 21 Crescent St in Northbridge.

The following four (4) potential options are being considered:
5. B2, Grades 2-4, New Construction at the Rear of the Site (510 enrollment);
6. C 2, Addition/Renovation of the existing Balmer School, keeping the Academic Wing (1,030 enrollment K-5, plus $80 \mathrm{PK}, 1,110$ total);
7. C3, Grades PK-5, New Construction at the Rear of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total); and
8. C5, Grades PK-5, New Construction, Front of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total).

The evaluation was based on the two (2) enrollment options of 510 and 1,110 students, because all four (4) options have identical access and egress points.

The new school (regardless of the option) will continue to be accessed from Crescent Street using two driveways. The access and egress to the school (parental drop-off and pick-up, as well as teachers and staff) will occur from the new driveway opposite Lake Street to the circular driveway at the new main entrance. The existing school driveway will also be used for pre-kindergarten parental drop-off and pick-up as well as access to the parking lots.

The bus and delivery traffic will arrive through the new driveway opposite Lake Street. The bus drop-off/pick-up will occur at the designated bus lane located south of the school.

A new one-way driveway will also allow vehicular egress to North Main Street.

New Balmer Elementary School with 510 Enrollment Option (Option A)

We examined the future conditions, as well as site circulation with respect to the projected student drop-off and pick-up at the new Balmer Elementary School. This option is not expected to increase traffic volumes at the School and adjacent streets during the weekday morning drop-off and weekday afternoon pick-up, but it will redistribute the existing traffic because of the new driveways providing additional access and egress to the school. The parking lot will contain 116 spaces, of which approximately 15 spaces may be available for parental parking, based on existing parking utilization. The curb at the car loop is approximately 1440 linear feet, which can accommodate an additional 72 vehicles.

New Balmer Elementary School with 1110 Enrollment Option (Option B)

We examined the future conditions, as well as site circulation with respect to the projected student drop-off and pick-up at the new Balmer Elementary School. This option would result in a doubling of traffic volumes at the school during the weekday morning drop-off and weekday afternoon pick-up, totaling approximately 222 trips
(130 entering and 92 exiting) during the weekday morning drop-off, and approximately 185 trips (81 entering and 104 exiting) during the weekday afternoon pick-up. The parking lot will contain 248 spaces, of which approximately 40 spaces may be available for parental parking, based on existing parking utilization. The curbs at the car loops combined can accommodate an additional 95 vehicles.

At the request of Dore \& Whittier Architects, Nitsch ran two scenarios to test the effectiveness of the proposed N Main driveway on overall site traffic efficiency: one model with the drive, and one without. On the model with the driveway, the maximum time delay at the two other exits from the site (onto Crescent Street) was approximately 11 seconds with a queue length of 16 feet (approximately one car length). Without the driveway, the time delay remains approximately 11 seconds, however the queue length increases to 20 feet (approximately two car lengths). This analysis shows that the effect of the proposed third drive on the function of the other two intersections is almost negligible, and the modeled results are certainly within reasonable level-of-service parameters for the two Crescent Street access drives.

Under either scenario, the one existing and two proposed new access drives have sight distances within safe guidelines.

8.2 Recommendations

Based on the proposed options for reconstruction of Balmer Elementary School, Nitsch Engineering offers the following recommendations regardless of the chosen option:

- Continue designating Crescent Street as a School Zone under State and local statute, and install the appropriate School Zone signs.
- The sidewalks and accessible ramps along Crescent Street are in acceptable condition. However, pedestrian experience along Crescent Street should be enhanced by improvements to the pedestrian and student crossing signage, and providing advanced warning signing of school entering and exiting traffic.
- Enhance the pedestrian experience along Lake and Arcade Streets by considering improvements to the sidewalks and accessible ramps where needed to accommodate safe walks to school, and providing advanced warning signing of school entering and exiting traffic.
- Reach out to parents via social media to increase safety awareness.

W. EDWARD BALMER ELEMENTARY SCHOOL

D\&W PROJECT \# 17-759
21 CRESCENT STREET WHITINSVILLE, MA 01588

OWNER

508234.856

OWNER PROJECT MANAGER

amerioe , M O O2
ARCHITECT

CIVIL CONSULTANT

FOOD SERVICE CONSULTANT

F: 977.3528 .858
ANDSCAPE CONSULTANT

MECHANICAL / ELECTRICAL CONSULTANT

PLUMBING \& FIRE PROTECTION CONSULTANT

STRUCTURAL CONSULTA
STRUCTURAL CONSU

TECHNOLOGY CONSULTANT

ACOUSTICAL CONSULTANT

sustainable design consultant

HAZARDOUS MATERIALS
HAZARDOUS MATERIALS

LOCATION MAP

\qquad

\qquad - ${ }^{23}$ - 22 | | 21 | 20 |
| :--- | :--- | :--- |
| | | | | 19 |
| :--- | - 18 \qquad

\qquad

EMOLTION Notes:

Mor

and

EARTH MOVING AND GRADING NOTES:

Revome

15.

GENERAL NOTES
Nomen ind

Brem ind

EROSION AND SEDIMENT CONTROL NOTES: and
 and

Nom 13.

UTLITY NOTES:
And

10. Mip

 MTONESS - 8°

$$
\begin{aligned}
& \text { Issuyctov frace me }
\end{aligned}
$$

$\frac{12^{\prime} \text { WIDE EMERGENCY GATE }}{\text { not To SCME }}$

$\frac{24^{\prime} \text { WIDE DOUBLE GATE }}{\text { NOT To SCALE }}$

section a

Noies

 $\frac{\text { TEMPORARY CHAIN LINK CONSTRUCTION FENCE }}{\text { WITH BALLAST BASE }}$

$77 \quad 26$

26	25	24	23

Prxamat
Exaw

$\frac{\text { BIORETENTION BASIN }}{\text { NOT To SCUE }}$

$\frac{\text { TYPICAL INLET TO WATER QUALITY SWALE SECTION }}{\text { not To SCALE }}$

$\frac{\text { RAIN GUARDIAN RAIN TURRET }}{\text { No To occale }}$

$\frac{\text { INLET TO SWALE }}{\text { not To scaik }}$

G

\qquad

21 \qquad
\qquad
\qquad

(T23) NORFH EXTEROR ELEVATION

(N23) SOUTHEXTEROR ELEVVATON
17-759
H20) EASTEETTEROR Relevation
H20) EASTEETTEROR Relevation

20 \qquad

Q27) PARTiL SOUTH ELEEVATON 4

,

A23 WEET LEEVation
A20) PARTALL SOUTH ELEVVATON3
 Mond

2.

1.

EXTERIOR MATERIALS LEGEND

\square mex wieter $\quad \square \square$ \square winn \square eman

exterior elevation

SYMBOLS LEGEND

${ }^{\text {Ci }}$

	eserfuememes

2ond
\qquad 22 \qquad 20 \qquad
\qquad
\qquad
\qquad 8

(227) Partial north lievation 2

 and

 Nomen

EXTERIOR MATERIALS LEGEND

\square maxueser	
\square	
1 nen	\square louse
Tusw	- wsomeal. orene

17-759

EXTERIOR ELEVATION
SYMBOLS LEGEND

A	в
(1)	

\qquad 12

EXTERIOR MATERIALS LEGEND

\square maxueser	
\square esmeseanvere	
\square ner	$\square^{\text {bower }}$
\square	\square neameat. copane

(

A9 (EAST ELEVVATON2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 21 $20 \quad 19$ \qquad 18 - 15 \qquad
\qquad
\qquad 12 - 11 \qquad

\qquad
\qquad

2 SECONDARY DUCT BANK SECTION "B-B" 0.04 schen nt.s.

(E0.04) POLERISER DETAIL

1 PRIMARY DUCT BANK SECTION "A-A"

$$
\begin{aligned}
& \text { (®f) } \\
& \text { Sp Sisme sisien eovi }
\end{aligned}
$$

[^0]: 260 Merrimac Street Bldg 7
 Newburyport, MA 01950
 978.499.2999 ph
 978.499.2944 fax

 212 Battery Street
 Burlington, VT 05401
 802.863.1428 ph 802.863.6955

[^1]: ${ }^{1}$ Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition, Federal Highway Administration

[^2]: ${ }^{2}$ Highway Capacity Manual, 2010 Edition, Transportation Research Board (TRB), Washington, D.C.

