## NEW W. EDWARD BALMER ELEMENTARY SCHOOL

TOWN OF NORTHBRIDGE, MASSACHUSETTS



### PLANNING BOARD SUBMISSION

**APRIL 9, 2019** 



260 Merrimac St. Bldg. 7, 2<sup>nd</sup> Floor Newburyport, Massachusetts 01950

Phone: 978-499-2999

212 Battery Street Burlington, Vermont 05401

Phone: 802.863.1428 www.doreandwhittier.com



#### Project Management

1000 Massachusetts Avenue Cambridge, Massachusetts 02138

Phone: 617.547.5400 <u>www.smma.com</u>



April 9, 2019

Mr. R. Gary Bechtholdt II, Town Planner Town of Northbridge Aldrich School Town Hall Annex 14 Hill Street Whitinsville, MA 01588

RE: W. Edward Balmer Elementary School – Planning Board Submission

Dear Gary,

Please accept this submission to the Planning Board for the New Balmer Elementary School project, attached and delivered on this date. The project includes construction of a new Grades PK-5 elementary school on the site of the existing Balmer school, which will also involve the Vail Field parcel as part of the project.

We have attached our previously submitted Zoning Bylaws analysis, which provides some relevant information for the Planning Board. In addition, we have isolated some items of information requested in the Bylaws section 173-49.1.E submission requirements that may not be included or easily inferred from the attached drawings, as follows:

- (2)(e) The proposed school building is 167,352 gross square feet (GSF) in size.
- (2)(h) The School Building Committee has proposed an electronic programmable LED sign at the front entrance of the school. It is intended to be mounted on (or recessed within) the masonry gateway shown on the site plan. A conceptual elevation drawing is attached. We are aware of the sign ordinance in the residential district, but would submit that a 12 SF internally lit, non-animated, white LED sign communicating activities and upcoming events at the school is both reasonable and essential for the school's function, and would not place an undue burden on neighbors.
- (2)(k) Estimated earthwork is as follows:

Phase I (New Building Construction) Bulk Grade Cut: 21,850 CY; Bulk Grade Fill: 14,000 CY.

Phase II (West Parking Lot Construction) Bulk Grade Cut: 8,650 CY; Bulk Grade Fill: 1,420 CY.

(2)(p)[1] Traffic Impact Report, by Nitsch Engineering, dated January 26, 2018, attached. The report body is included; however, the appendix of some 163 pages containing the raw traffic count data is not, but is available upon request.

For the remainder of (2)(p) [2-4] we would submit that these items are either covered under the Conservation Commission application or not germane to this public building project and should be waived for this application.

ARCHITECTS
PROJECT MANAGERS

260 Merrimac Street Bldg 7 Newburyport, MA 01950 978.499.2999 ph 978.499.2944 fax

212 Battery Street Burlington, VT 05401 802.863.1428 ph 802.863.6955

www.doreandwhittier.com

Mr. Gary Bechtholdt, Town Planner BALMER – Planning Submission April 9, 2019 Page 2 of 2

Please contact me if you have any question on the above material, or require anything further. We look forward to working with you to continue the permitting process for this project.

Sincerely,

DORE & WHITTIER ARCHITECTS, INC.

Architects ■ Project Managers

Tom Hengelsberg, AIA Project Manager

Attachments

cc: File

#### **Table of Contents**

| COVER LETTER                                    |     |
|-------------------------------------------------|-----|
| TABLE OF CONTENTS                               | 1.0 |
| SITE PLAN REVIEW APPLICATION FORM               | 2.0 |
| FORM C-4 – CERTIFIED LIST OF ABUTTERS           | 3.0 |
| ZONING ANALYSIS LETTER                          | 4.0 |
| EXTERIOR 3-D RENDERINGS WITH MATERIALS & COLORS | 5.0 |
| Signage Detail                                  | 6.0 |
| EXTERIOR LIGHTING FIXTURE CUT SHEETS            | 7.0 |
| TRAFFIC IMPACT REPORT                           | 8.0 |
| PLANNING BOARD SUBMISSION DRAWINGS              | Атт |

#### SITE PLAN REVIEW



| April 9 , 2019                                                                                         |
|--------------------------------------------------------------------------------------------------------|
| Applicant: Dore & Whittier Architects, Inc.                                                            |
| Address: 260 Merrimac Street, Building 7, Newburyport, MA 01950                                        |
|                                                                                                        |
| To the Planning Board of the Town of Northbridge                                                       |
| The undersigned, being the applicant for approval of a site plan shown on a plan entitled: "Planning   |
| Board Submission Package for the New W. Edward Balmer School"                                          |
| designed by Dore _& Whittier _Architects/ _Nitsch _Engineering/ _Horiuchi _& _Solien _Landscape        |
| Architects , dated April 9, 2019 and described as follows:                                             |
|                                                                                                        |
| A plan showing                                                                                         |
| Civil Engineering: Demolition Plans, Roadway Layout Plans, Road Signage and Striping Plans, Building   |
| Location Plans, Site Grading Plans, Site Utility Plans, Site Drainage Plans, Selected Civil            |
| Engineering Profiles and Details.                                                                      |
| Landscape Architecture: Overall Site Plan, Layout and Materials Plan and Enlargements, Planting Plans, |
| Landscape Details.                                                                                     |
| Architectural: Building Elevations with materials called out, Colored 3-D Renderings, Signage Details  |
| Electrical Engineering: Electrical Site Plan & Details, Exterior Lighting Fixture Cut Sheets           |
|                                                                                                        |
| Location: 21 Crescent Street, Whitinsville, MA 01588                                                   |
| Total acreage of tract: 30.08 acres (+-)                                                               |
| Total square footage of gross floor area proposed: 167,352 GSF                                         |
| The project is a new structure or group of structures: Not Applicable X YesNo                          |
| This project is an improvement, alteration, or addition to existing structures:Yes XNo                 |
| Not Applicable                                                                                         |
|                                                                                                        |

Said applicant hereby submits said site plan in accordance with the Northbridge Zoning By-law Article X §173-49.1 for approval of said site plan.

| The undersigned's title to said land is derived fromWhitin Machine Works                             |
|------------------------------------------------------------------------------------------------------|
| by deed dated April 24, 1963 and recorded in the Worcester South                                     |
| County District Registry of Deeds Book, Page342, registered in theN/A                                |
| County Registry District of the Land Court, Certificate of Title No                                  |
|                                                                                                      |
|                                                                                                      |
| Applicant's Signature: Date: 4/9/2019                                                                |
| Applicant's Address: Dore & Whittier Architects, Lec., 260 Merrimac Street, Building 7, Newburyport, |
| MA 01950                                                                                             |
| Applicant's Telephone: 978-499-2999                                                                  |
| Applicant's Telephone.                                                                               |
| Owner's Signature: Date: 4.9. 2019                                                                   |
| Owner's Address: Town of Northbridge (for Northbridge Public Schools), 7 Main Street,                |
| Whitinsville, MA 01588                                                                               |
| Owner's Telephone: 508-234-2095 (NPS - 508-234-8156)                                                 |
|                                                                                                      |
| Applicant's Authorization if not the owner:                                                          |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
| Received by the Town Clerk:                                                                          |
| Date:                                                                                                |
|                                                                                                      |
| Time:                                                                                                |

#### NORTHBRIDGE PLANNING BOARD

#### FORM C-4

### CERTIFIED LIST OF ABUTTERS SITE PLAN REVIEW



Date

|                      |                |              |                                  |                 | April 9,                                                              | , 2019                            |
|----------------------|----------------|--------------|----------------------------------|-----------------|-----------------------------------------------------------------------|-----------------------------------|
| Instructions         |                |              |                                  |                 |                                                                       |                                   |
| The abutters l       | list shall b   | e prepared   | by the applicant                 | t and submitted | d to the assessor's office f                                          | or certification.                 |
|                      | arcels wit     |              |                                  |                 | ring the land described in rcel shall be numbered in                  |                                   |
|                      |                |              | wners, from the line of the prop |                 | x list, of each abutting par<br>on.                                   | rcel within three                 |
| <u>Plan Identifi</u> | cation         |              |                                  |                 |                                                                       |                                   |
| Project Name         | : <u>New W</u> | V. Edward    | Balmer Element                   | ary School      |                                                                       |                                   |
| Address of Pr        | roject:        | 21 Cresce    | ent Street, Whiti                | nsville, MA 01  | 1588                                                                  | z .                               |
| Map and Pard         | cel No         | Lot ID 7-    | 138                              |                 |                                                                       | -                                 |
| Applicant: _         | Dore 8         | ک Whittier ک | Architects, Inc.                 |                 |                                                                       | -                                 |
| Address: _           | 212 Ba         | attery Stree | t, Burlington, V                 | Т 05401         |                                                                       | 2                                 |
| Telephone: _         | 802-86         | 3-1428       |                                  |                 | <b>-</b> -1                                                           |                                   |
| Owner:               | Town           | of Northbri  | dge (for Northb                  | ridge Public S  | chools)                                                               | e e                               |
| Address:             | 7 Mair         | Street, W    | hitinsville, MA                  | 01588           |                                                                       |                                   |
| Telephone: _         | 508-23         | 4-2095       | (NPS - 508-234-                  | -8156)          |                                                                       | -                                 |
| Northbridge          | the nan        | es and ad    | dresses of the                   | parties assess  | t for taxation made bed as adjoining owners to the best of our knowle | to the parcel of edge and belief. |
|                      |                |              |                                  | (               | Juf Ceus<br>4-11-19                                                   | assessor's Office                 |
|                      |                |              |                                  |                 | 4-11-19                                                               |                                   |

| Мар | Block | Lot  | Unit | Owner~s Name                      | Co Owner~s Name                     | Address              | City         | ST Zip   | Parcel Location    |
|-----|-------|------|------|-----------------------------------|-------------------------------------|----------------------|--------------|----------|--------------------|
| 6   | 1     |      |      | CHILTON KENDELL A                 |                                     | 125 BROOKWAY DR      | NORTHBRIDGE  | MA 01534 | 255 NO MAIN ST     |
| 6   | 2     |      |      | GUO BINGZHU                       |                                     | 125 BROOKWAY DR      | NORTHBRIDGE  | MA 01534 | 261 NO MAIN ST     |
| 6   | 3     |      |      | YOUNGSMA ALVIN H TR               | MARY L YOUNGSMA TR                  | 269 NO MAIN ST       | WHITINSVILLE | MA 01588 | 269 NO MAIN ST     |
| 6   | 4     |      |      | MONTECALVO JOSEPH J               | MARGARET B MONTECALVO               | 279 NO MAIN ST       | WHITINSVILLE | MA 01588 | 279 NO MAIN ST     |
| 6   | 33    |      |      | TOWN OF NORTHBRIDGE               |                                     | N/A                  | NORTHBRIDGE  | MA 01534 | LAKE ST            |
| 6   | 34    |      |      | K T K M REALTY TRUST              |                                     | 611 LINCOLN ST       | FRANKLIN     | MA 02038 | 24-34 CRESCENT ST  |
| 7   | 32    |      |      | CONNOLLY JOHN C                   | KAREN J CONNOLLY                    | 97 TRACEY DRIVE      | WHITINSVILLE | MA 01588 | 97 TRACEY DR       |
| 7   | 33    |      |      | 0'DONNELL GLENN E                 | DONNA O'DONNELL                     | 89 MASON RD          | WHITINSVILLE | MA 01588 | 89 MASON RD        |
| 7   | 74    |      |      | LAYDON JOSEPH T                   | CHRISTINA P LAYDON                  | 63 MASON RD          | WHITINSVILLE | MA 01588 | 63 MASON RD        |
| 7   | 75    |      |      | CIOFFI ALFRED                     | CYNTHIA CIOFFI                      | 82 MASON RD          | WHITINSVILLE | MA 01588 | 82 MASON RD        |
| 7   | 76    |      |      | KELLY SUSAN A                     | SEAN J KELLY                        | 70 MASON RD          | WHITINSVILLE | MA 01588 | 70 MASON RD        |
| 7   | 77    |      |      | PIXLEY GERALD W                   | SUSAN M PIXLEY, TE                  | 56 MASON RD          | WHITINSVILLE | MA 01588 | 56 MASON RD        |
| 7   | 78    |      |      | HEFFERNAN TIMOTHY M               | JACQUELYN M LYONS-HEFFERNAN         | 48 MASON RD          | WHITINSVILLE | MA 01588 | 48 MASON RD        |
| 7   | 105   |      |      | NAU LURANA M                      |                                     | 66 FAIRLAWN ST       | WHITINSVILLE | MA 01588 | 66 FAIRLAWN ST     |
| 7   | 106   |      |      | DAWSON MICHAEL J                  | C/O TOBIAS M CONIO                  | 60 FAIRLAWN ST       | WHITINSVILLE | MA 01588 | 60 FAIRLAWN ST     |
| 7   | 107   |      |      | BAXENDALE JAMES F TRUSTEE         | BAXENDALE REALTY TRUST              | 52 FAIRLAWN ST       | WHITINSVILLE | MA 01588 | 52 FAIRLAWN ST     |
| 7   | 109   |      |      | THIBODEAU RITA P, LE              | M STOCKHAUS, L SOHIGIAN, S KURAS, 1 | r 34 fairlawn st     | WHITINSVILLE | MA 01588 | 34 FAIRLAWN ST     |
| 7   | 110   |      |      | MARSHALL BRIAN                    | LYNN MARSHALL                       | 26 FAIRLAWN ST       | WHITINSVILLE | MA 01588 | 26 FAIRLAWN ST     |
| 7   | 111   |      |      | WHITAKER CHRISTINA A              |                                     | 20 FAIRLAWN ST       | WHITINSVILLE | MA 01588 | 20 FAIRLAWN ST     |
| 7   | 113   |      |      | CAMPBELL JESSICA L                | JONATHON S CAMPBELL TE              | 352 NO MAIN ST       | WHITINSVILLE | MA 01588 | 352 NO MAIN ST     |
| 7   | 115   |      |      | TAYLOR JOSEPH R                   | C/O JOSEPH R TAYLOR TRUSTEE         | 344 NO MAIN ST       | WHITINSVILLE | MA 01588 | 344 NO MAIN ST     |
| 7   | 116   |      |      | KUINDERSMA MARK                   | DIANE M BEAULIEU, JT                | 70 FAIRLAWN ST       | WHITINSVILLE | MA 01588 | 70 FAIRLAWN ST     |
| 7   | 117   |      |      | POULIOT JEANNETTE L               | BRAIN G POULIOT, TC                 | 330-332 NO MAIN ST   | WHITINSVILLE | MA 01588 | 330-332 NO MAIN ST |
| 7   | 118   |      |      | BEDIGIAN JAMES D                  |                                     | 320 NO MAIN ST       | WHITINSVILLE | MA 01588 | 320 NO MAIN ST     |
| 7   | 119   |      |      | SHANNAHAN JOHN P                  | C/O ANDREW & ABAGAIL YANCO          | 306 NO MAIN ST       | WHITINSVILLE | MA 01588 | 306 NO MAIN ST     |
| 7   | 120   |      |      | WIERSMA BERNARD TRUSTEE           | B & M WIERSMA LIVING TRUST          | 104 SULLIVAN DR      | WHITINSVILLE | MA 01588 | 104 SULLIVAN DR    |
| 7   | 121   |      |      | BOWMAN RONALD                     | NANCY BOWMAN                        | 82 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 82 SULLIVAN DR     |
| 7   | 122   |      |      | GARRITY ROBERT M                  |                                     | 74 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 74 SULLIVAN DR     |
| 7   | 123   |      |      | DESPLECHIIN DAWN M                | WILLIAM D ISON, JT                  | 64 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 64 SULLIVAN DR     |
| 7   | 124   |      |      | GILE CARROLL G                    | C/O JOCELYN L ARN                   | 56 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 56 SULLIVAN DR     |
| 7   | 125   |      |      | DOBELBOWER JAKE                   | ASHLEY L DOBELBOWER                 | 48 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 48 SULLIVAN DR     |
| 7   | 126   |      |      | BROWN MICHAEL L                   |                                     | 38 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 38 SULLIVAN DR     |
| 7   | 127   |      |      | POWERS EILEEN                     | NANCY A & THOMAS P POWERS, JT       | 25 SULLIVAN DR       | WHITINSVILLE | MA 01588 | SULLIVAN DR        |
| 7   | 128   |      |      | POWERS EILEEN                     | NANCY A & THOMAS P POWERS, JT       | 25 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 25 SULLIVAN DR     |
| 7   | 130   |      |      | FREMEAU MARK J                    | LYNNE VALLEY FREMEAU                | 270 NO MAIN ST       | WHITINSVILLE | MA 01588 | 270 NO MAIN ST     |
| 7   | 131   |      |      | OSIECKI DIANE C LIFE ESTATE       | LAURIE A CIRAS                      | 278 NO MAIN ST       | WHITINSVILLE | MA 01588 | 278 NO MAIN ST     |
| 7   | 132   |      |      | BRIAND MAUREEN E TRUSTEE FEEN FAM | T                                   | 89 SULLIVAN DR       | WHITINSVILLE | MA 01588 | 89 SULLIVAN DR     |
| 7   | 133   |      |      | ZAWIERUSZYNSKI MARYANN P          | MICHAEL ZAWIERUSZYNSKI              | 296 NO MAIN ST       | WHITINSVILLE | MA 01588 | 296 NO MAIN ST     |
| 7   | 134   |      |      | FORNACIARI ANTHONY M              | C/O MEGHAN M WINCHELL & SUSAN BURBU | J 286 NO MAIN ST     | WHITINSVILLE | MA 01588 | 286 NO MAIN ST     |
| 7   | 135   |      |      | POULIOT MICHAEL J                 | ANALIEZEL POULOIT, TE               | 264 NO MAIN ST       | WHITINSVILLE | MA 01588 | 264 NO MAIN ST     |
| 7   | 136   |      |      | FLAHERTY MATTHEW T                |                                     | 256 NO MAIN ST       | WHITINSVILLE | MA 01588 | 256 NO MAIN ST     |
| 7   | 137   |      |      | BALL JASON ANDREW                 | C/O JASON BALL & DONNA EVANS        | 246 NO MAIN ST       | WHITINSVILLE | MA 01588 | 246 NO MAIN ST     |
| 7   | 138   |      |      | TOWN OF NORTHBRIDGE               |                                     | W E BALMER SCHOOL    | WHITINSVILLE | MA 01588 | 11 CRESCENT ST     |
| 7   | 142   |      |      | MAHONEY NOMINEE TRUST             | C/O PATRICK H & ELAINE L MAHONEY    | 2900 PROVIDENCE RD N | NORTHBRIDGE  | MA 01534 | 45-55 CRESCENT ST  |
| 7   | 146   |      |      | LEGERE PROPERTIES LLC             | JOHN R LEGERE JR                    | 1 CRESTVIEW DR       | UXBRIDGE     | MA 01569 | 44-54 CRESCENT ST  |
| 7   | 147   |      |      | BELLI HEATHER                     | MICHAEL ALDEN, JT                   | 56 LAKE ST           | WHITINSVILLE | MA 01588 | 56 LAKE ST         |
|     |       | 0.0. |      |                                   |                                     |                      |              |          |                    |

| Мар | Block      | Lot | Unit | Owner~s Name                                            | Co Owner~s Name                     | Address                | City                         | ST Zip               | Parcel Location                 |
|-----|------------|-----|------|---------------------------------------------------------|-------------------------------------|------------------------|------------------------------|----------------------|---------------------------------|
| 7   | 287        |     |      | AUSTIN LUKE C TE                                        | HOLLY L AUSTIN TE                   | 325 SWIFT RD           | WHITINSVILLE                 | MA 01588             | 325 SWIFT RD                    |
| 7   | 288        |     |      | COLLINS RUSSELL D                                       | KATHLEEN Y COLLINS                  | 292 MASON RD           | WHITINSVILLE                 | MA 01588             | 292 MASON RD                    |
| 7   | 289        |     |      | CHAGNON IRREVOCABLE FAMILY TRUST                        | PAUL CHAGNON/DENISE ZECCO, TRUSTEE  | 282 MASON RD           | WHITINSVILLE                 | MA 01588             | 282 MASON RD                    |
| 7   | 290        |     |      | CRAIG FRANCINE                                          | C/O A PEREZ & K RIVERA              | 266 MASON RD           | WHITINSIVLLE                 | MA 01588             | 266 MASON RD                    |
| 7   | 291        |     |      | ZANELLA PATRICK T                                       | TARA A ZANELLA                      | 254 MASON RD           | WHITINSVILLE                 | MA 01588             | 254 MASON RD                    |
| 7   | 292        |     |      | VALIS DAVID O                                           | LINDA M VALIS                       | 244 MASON RD           | WHITINSVILLE                 | MA 01588             | 244 MASON RD                    |
| 7   | 293        |     |      | BARIS CHARLES R                                         | CATHERINE F BARIS                   | 230 MASON RD           | WHITINSVILLE                 | MA 01588             | 230 MASON RD                    |
| 7   | 294        |     |      | COURTEMANCHE JOHN                                       | JACQUELINE C COURTEMANCHE           | 216 MASON RD           | WHITINSVILLE                 | MA 01588             | 216 MASON RD                    |
| 7   | 295        |     |      | ARMSTRONG JOHN A                                        | MARY L ARMSTRONG                    | PO BOX 172             | WHITINSVILLE                 | MA 01588             | 202 MASON RD                    |
| 7   | 296        |     |      | BIGNESS KYLE                                            | KERI L BIGNESS                      | 192 MASON RD           | WHITINSVILLE                 | MA 01588             | 192 MASON RD                    |
| 7   | 297        |     |      | BROOKS JOHN LEROY                                       |                                     | 178 MASON RD           | WHITINSVILLE                 | MA 01588             | 178 MASON RD                    |
| 7   | 298        |     |      | STOCKWELL EDWARD R SR                                   | MARGARET B STOCKWELL, TE            | 168 MASON RD           | WHITINSVILLE                 | MA 01588             | 168 MASON RD                    |
| 7   | 299        |     |      | KELLEHER SEAN D                                         | C/O JEREMY HARRIS/LESLIE R COSGRO   | 156 MASON RD           | WHITINSVILLE                 | MA 01588             | 156 MASON RD                    |
| 7   | 300        |     |      | KOUREY NICHOLAS W                                       | C/O SCOTT & SAMANTHA MURDOUGH       | 146 MASON RD           | WHITINSVILLE                 | MA 01588             | 146 MASON RD                    |
| 7   | 301        |     |      | GUGLIELMO KENNETH R                                     | MARIA A GUGLIELMO                   | 138 MASON RD           | WHITINSVILLE                 | MA 01588             | 138 MASON RD                    |
| 7   | 302        |     |      | GAMBON THOMAS M                                         |                                     | 130 MASON RD           | WHITINSIVLLE                 | MA 01588             | 130 MASON RD                    |
| 7   | 303        |     |      | SULLIVAN BRIAN J                                        |                                     | 68 EVERGREEN CR        | WHITINSVILLE                 | MA 01588             | 68 EVERGREEN CR                 |
| 7   | 304        |     |      | FORTIN LIVING TRUST                                     | DENNIS J & BARBARA J FORTIN, TRUSTE |                        | NORTHBRIDGE                  | MA 01588             | 56 EVERGREEN CR                 |
| 7   | 306        |     |      | HAY CRAIG D                                             | MARY E HAY, TE                      | 32 EVERGREEN CR        | WHITINSVILLE                 | MA 01588             | 32 EVERGREEN CR                 |
| 7   | 307        |     |      | CAHALANE JONATHAN V                                     | DENISE E CAHALANE                   | 20 EVERGREEN CR        | WHITINSVILLE                 | MA 01588             | 20 EVERGREEN CR                 |
| 7   | 308        |     |      | NEWELL KENNETH S                                        | BRENDA L NEWELL                     | 19 EVERGREEN CR        | WHITINSVILLE                 | MA 01588             | 19 EVERGREEN CR                 |
| 7   | 309        |     |      | HAWKES CHARLES B                                        | KRISTINE B HAWKES                   | 126 FAIRLAWN ST        | WHITINSVILLE                 | MA 01588             | 126 FAIRLAWN ST                 |
| 7   | 310        |     |      | FROMENT KRISTINE A                                      | DAVID MA FROMENT, TE                | 31 EVERGREEN CR        | WHITINSVILLE                 | MA 01588             | 31 EVERGREEN CR                 |
| 7   | 311        |     |      | MALONE MICHAEL P                                        | MELISSA A MALONE                    | 41 EVERGREEN CR        | WHITINSVILLE                 | MA 01588             | 41 EVERGREEN CR                 |
| 7   | 312        |     |      | COGLIANDRO PAUL D                                       | SUSAN M. COGLIANDRO                 | 53 EVERGREEN CIR       | WHITINSVILLE                 | MA 01588             | 53 EVERGREEN CR                 |
| 7   | 313<br>314 |     |      | TOWN OF NORTHBRIDGE PILEGGI MARK & DAVID PILEGGI JR. TI | D C/O DIJECCI IDDEVOCADIE EDICE     | N/A<br>65 EVERGREEN CR | WHITINSVILLE                 | MA 01588<br>MA 01588 | EVERGREEN CR<br>65 EVERGREEN CR |
| 7   | 314        |     |      | VITAGLIANO ROBERT                                       | ELISABETH VITAGLIANO                | 94 MASON RD            | WHITINSVILLE<br>WHITINSVILLE | MA 01588             | 94 MASON RD                     |
| 7   | 316        |     |      | PILEGGI DAVID J JR                                      | ALISON PILEGGI, TE                  | 120 MASON RD           | WHITINSVILLE                 | MA 01588             | 120 MASON RD                    |
| 7   | 317        |     |      | DEMBROWSKI STEPHEN J                                    | MARIE A DEMBROWSKI                  | 103 MASON RD           | WHITINSVILLE                 | MA 01588             | 103 MASON RD                    |
| 7   | 318        |     |      | GAY BRUCE C                                             | MARGARET M GAY                      | 80 DOVER DR            | WHITINSVILLE                 | MA 01588             | 80 DOVER DR                     |
| 7   | 330        |     |      | DER MUGRDITCHIAN MARK                                   | CYNTHIA DER MUGRDITCHIAN            | 75 DOVER DR            | WHITINSVILLE                 | MA 01588             | 75 DOVER DR                     |
| 7   | 331        |     |      | FLEMING KEVIN J                                         | C/O PHILIP & SARAH HANNA            | 89 DOVER DR            | WHITINSVILLE                 | MA 01588             | 89 DOVER DR                     |
| 7   | 332        |     |      | ROSSELLI ANTHONY J                                      | C/O ANTHONY J ROSSELLI              | 109 DOVER DR           | WHITINSVILLE                 | MA 01588             | 109 DOVER DR                    |
| 7   | 333        |     |      | CRAWFORD RYAN                                           | CARRIE CRAWFORD, TE                 | 115 MASON RD           | WHITINSVILLE                 | MA 01588             | 115 MASON RD                    |
| 7   | 334        |     |      | CASEY FAMILY NOMINEE TRUST                              | JOHN T & LOIS A CASEY TRS           | 151 MASON RD           | WHITINSVILLE                 | MA 01588             | 151 MASON RD                    |
| 7   | 335        |     |      | SWARTZ PETER S                                          | MARYANNE BELMONTE SWARTZ            | 96 KERRY LN            | WHITINSVILLE                 | MA 01588             | 96 KERRY LN                     |
| 7   | 336        |     |      | MIEDEMA DAVID III & KATHLEEN E, TR                      |                                     | 84 KERRY LN            | WHITINSVILLE                 | MA 01588             | 84 KERRY LN                     |
| 7   | 337        |     |      | ROBINSON DANIEL P                                       |                                     | 72 KERRY LN            | WHITINSVILLE                 | MA 01588             | 72 KERRY LN                     |
| 7   | 347        |     |      | BOL NICHOLAS P                                          | KELLY S BOL, TE                     | 69 KERRY LN            | WHITINSVILLE                 | MA 01588             | 69 KERRY LN                     |
| 7   | 348        |     |      | DURGIN WILLIAM R                                        | LINDA F DURGIN                      | 81 KERRY LANE          | WHITINSVILLE                 | MA 01588             | 81 KERRY LN                     |
| 7   | 349        |     |      | OUILLETTE DAVID J                                       | MARYANN OUILLETTE                   | 93 KERRY LN            | WHITINSVILLE                 | MA 01588             | 93 KERRY LN                     |
| 7   | 350        |     |      | BARKLEY JOHN C                                          | BETH A BARKLEY                      | 175 MASON RD           | WHITINSVILLE                 | MA 01588             | 175 MASON RD                    |
| 7   | 351        |     |      | BANNING ROBERT A                                        | ELIZABETH A BANNING                 | 191 MASON RD           | WHITINSVILLE                 | MA 01588             | 191 MASON RD                    |
| 7   | 352        |     |      | COOK BRIAN D                                            | KATE E COOK, TE                     | 76 MICHAEL LN          | WHITINSVILLE                 | MA 01588             | 76 MICHAEL LN                   |
| 7   | 353        |     |      | HENDERSON CHRISTOPHER                                   | KAREN D HENDERSON                   | 64 MICHAEL LN          | WHITINSVILLE                 | MA 01588             | 64 MICHAEL LN                   |

4/11/2019 4:22:01PM

| Мар | Block | Lot | Unit | Owner~s Name               | Co Owner~s Name                     | Address           | City         | ST Zip       | Parcel Location    |
|-----|-------|-----|------|----------------------------|-------------------------------------|-------------------|--------------|--------------|--------------------|
| 7   | 354   |     |      | TOWNSEND DAVID J           | JESSICA M TOWNSEND                  | 50 MICHAEL LN     | WHITINSVILLE | MA 01588     | 50 MICHAEL LN      |
| 7   | 361   |     |      | CALUORI MICHAEL JR         | BARBARA WINSOR CALUORI              | 45 MICHAEL LANE   | WHITINSVILLE | MA 01588     | 45 MICHAEL LN      |
| 7   | 362   |     |      | MUTELL ROBERT A            | CAROLYN A MUTELL                    | 57 MICHAEL LANE   | WHITINSVILLE | MA 01588     | 57 MICHAEL LN      |
| 7   | 363   |     |      | HEDTLER ASHLEY E           | SCOTT M HEDTLER                     | 71 MICHAEL LN     | WHITINSVILLE | MA 01588     | 71 MICHAEL LN      |
| 7   | 364   |     |      | KELLEY THOMAS A            | NICOLE F KELLEY                     | 211 MASON RD      | WHITINSVILLE | MA 01588     | 211 MASON RD       |
| 7   | 365   |     |      | JORRITSMA RICHARD L        | RIA H JORRITSMA, TE                 | 223 MASON RD      | WHITINSVILLE | MA 01588     | 223 MASON RD       |
| 7   | 366   |     |      | TUCKER BRANDON P           | C/O MICHAEL JOSEPH LANG             | 60 CANTON ST      | SHARON       | MA 02067     | 40 ACORN RD        |
| 7   | 367   |     |      | WHITE MATTHEW J            | KELLY A WHITE                       | 34 ACORN RD       | WHITINSVILLE | MA 01588     | 34 ACORN RD        |
| 7   | 368   |     |      | BROOKS AMY L               |                                     | 28 ACORN RD       | WHITINSVILLE | MA 01588     | 28 ACORN RD        |
| 7   | 369   |     |      | STEFANIAK MICHAEL J JR TE  | ANNE B STEFANIAK                    | 22 ACORN RD       | WHITINSVILLE | MA 01588     | 22 ACORN RD        |
| 7   | 373   |     |      | PERRY STEVEN M             | KATHLEEN B PERRY                    | 25 ACORN RD       | WHITINSVILLE | MA 01588     | 25 ACORN RD        |
| 7   | 374   |     |      | COE JAMES T                |                                     | 29 ACORN RD       | WHITINSVILLE | MA 01588     | 29 ACORN RD        |
| 7   | 375   |     |      | DUFFY SUSAN B              | C/O JOSHUA & SARAH RODHE            | 35 ACORN RD       | WHITINSVILLE | MA 01588     | 35 ACORN RD        |
| 7   | 376   |     |      | LESSARD VICTOR L           | FRANCES M LESSARD                   | 251 MASON RD      | WHITINSVILLE | MA 01588     | 251 MASON RD       |
| 7   | 377   |     |      | EBBELING RONALD J          | C/O STEVEN & BRIANNE SUSEL          | 263 MASON RD      | WHITINSVILLE | MA 01588     | 263 MASON RD       |
| 7   | 378   |     |      | GARD GERALD I              | JEAN M GARD                         | 277 MASON RD      | WHITINSVILLE | MA 01588     | 277 MASON RD       |
| 7   | 379   |     |      | SWEETMAN ROBERT D          | JOANN SWEETMAN                      | 291 MASON RD      | WHITINSVILLE | MA 01588     | 291 MASON RD       |
| 7   | 380   |     |      | EDWARDS MICHAEL A          | MARGARET K EDWARDS                  | 308 SWIFT RD      | WHITINSVILLE | MA 01588     | 308 SWIFT RD       |
| 7   | 381   |     |      | BLISS BURT J               | SHERYL L BLISS                      | 298 SWIFT RD      | WHITINSVILLE | MA 01588     | 298 SWIFT RD       |
| 7   | 382   |     |      | GAGNON DAVID R             | EDNA I GAGNON, TE                   | 286 SWIFT RD      | WHITINSVILLE | MA 01588     | 286 SWIFT RD       |
| 7   | 386   |     |      | ARBUCKLE PRISCILLA S       | JOHN D ARBUCKLE                     | 82 FAIRLAWN ST    | WHITINSVILLE | MA 01588     | 82 FAIRLAWN ST     |
| 7   | 387   |     |      | MORRISSETTE PATRICIA F     |                                     | 94 SULLIVAN DR    | WHITINSVILLE | MA 01588     | 94 SULLIVAN DR     |
| 6A  | 2     |     |      | BAILEY STELLA C , L.E.     | C/O THOMAS & CHRISTINE SCANLON      | 236 NO MAIN ST    | WHITINSVILLE | MA 01588     | 236 NO MAIN ST     |
| 6A  | 3     |     |      | GONYNOR ROBERT             |                                     | 222 NO MAIN ST    | WHITINSVILLE | MA 01588     | 222 NO MAIN ST     |
| 6A  | 4     |     |      | TRAN STEVE                 |                                     | 2077 WISTERIA LN  | MIDDLEBURG   | FL 32068-503 | 37 206 NO MAIN ST  |
| 6A  | 7     |     |      | ROONEY LAWRENCE            | CHERRY H ROONEY                     | 25 WEST HILL RD   | MENDON       | MA 01756     | 34-44 OVERLOOK ST  |
| 6A  | 8     |     |      | CC&L PROPERTIES, LLC       | GEORGE & LAURA PAPPAS               | 4 BUDREAU AVE     | MILLBURY     | MA 01527     | 22-32 OVERLOOK ST  |
| 6A  | 11    |     |      | LORD WILLIAM J             | DANIEL E LORD                       | 1-3 OVERLOOK ST   | WHITINSVILLE | MA 01588     | 1-3 OVERLOOK ST    |
| 6A  | 14    |     |      | SOUTH MIDDLESEX NON-PROFIT | HOUSING CORPORATION                 | 7 BISHOP ST       | FRAMINGHAM   | MA 01702     | 21-31 OVERLOOK ST  |
| 6A  | 15    |     |      | SOUTH MIDDLESEX NON-PROFIT | HOUSING CORPORATION                 | 7 BISHOP ST       | FRAMINGHAM   | MA 01702     | 33-43 OVERLOOK ST  |
| 6A  | 16    |     |      | CARROLL DAVID JR           | MICHELLE A CARROLL                  | PO BOX 333        | WHITINSVILLE | MA 01588     | 182-184 NO MAIN ST |
| 6A  | 19    |     |      | BAKER GREGORY              | HEATHER BAKER, TE                   | 150 NO MAIN ST    | WHITINSVILLE | MA 01588     | 150 NO MAIN ST     |
| 6A  | 21    |     |      | HUMPHREY BRANDEN J         | SHARON R HUMPHREY, TE               | PO BOX 467        | GOFFSTOWN    | NH 03045     | 108-112 NO MAIN ST |
| 6A  | 22    |     |      | MELLO PAUL J, SR           | DONNA MELLO, TE                     | 1-3 CRESCENT ST   | WHITINSVILLE | MA 01588     | 1-3 CRESCENT ST    |
| 6A  | 23    |     |      | KENT RONALD R              | DAVIDE E TREMBLAY, TE               | 5-7 CRESCENT ST   | WHITINSVILLE | MA 01588     | 5-7 CRESCENT ST    |
| 6A  | 24    |     |      | MAYER CHRISTOPHER J        | JULIE LAPLANTE                      | 18-22 CRESCENT ST | WHITINSVILLE | MA 01588     | 18-22 CRESCENT ST  |
| 6A  | 25    |     |      | HAGGERTY RICHARD R         | C/O MICHAEL RAAD & KELLY ROYCE      | 14-16 CRESCENT ST | WHITINSVILLE | MA 01588     | 14-16 CRESCENT ST  |
| 6A  | 26    |     |      | GUIOU DIANE                |                                     | 10-12 CRESCENT ST | WHITINSVILLE | MA 01588     | 10-12 CRESCENT ST  |
| 6A  | 27    |     |      | KAMISHLIAN NICOLE          | C/O STEVEN LLOYD DEARBORN           | 6-8 CRESCENT ST   | WHITINSVILLE | MA 01588     | 6-8 CRESCENT ST    |
| 6A  | 28    |     |      | THARSILLE, LLC             |                                     | P O BOX 341       | MANCHAUG     | MA 01526     | 2-4 ARCADE ST      |
| 6A  | 36    |     |      | BEAUDOIN HARRIET           | MICHAEL BONET & NATASHA SANTORO, TC | 5 ARCADE ST       | WHITINSVILLE | MA 01588     | 5-7 ARCADE ST      |
| 6A  | 37    |     |      | PLANT BRIAN                | COLLEEN M PLANT, TE                 | 1 ARCADE ST       | WHITINSVILLE | MA 01588     | 1-3 ARCADE ST      |
| 6A  | 38    |     |      | MCLAUGHLIN NANCY A         | COLLEEN M MCLAUGHLIN                | 4 CRESCENT STREET | WHITINSVILLE | MA 01588     | 2-4 CRESCENT ST    |
| 6A  | 39    |     |      | OIKLE ARNOLD L             | CAROL LEE OIKLE                     | 329 HAZEL ST      | UXBRIDGE     | MA 01569     | 96-98 NO MAIN ST   |
| 6A  | 40    |     |      | WHITE RONALD L             | KATHLEEN A WHITE                    | 88 NO MAIN ST     | WHITINSVILLE | MA 01588     | 86 NO MAIN ST      |
| 6A  | 123   |     |      | DROSIDIS KONSTANTINOS      | ELENI DROSIDIS                      | 199 NO MAIN ST    | WHITINSVILLE | MA 01588     | 205 NO MAIN ST     |
|     |       |     |      |                            |                                     |                   |              |              |                    |

| Map | Block | Lot | Unit | Owner~s Name                    | Co Owner~s Name               | Address            | City          | ST Zip        | Parcel Location |
|-----|-------|-----|------|---------------------------------|-------------------------------|--------------------|---------------|---------------|-----------------|
| 6A  | 124   |     |      | TINKLENBERG JACOB K             | BEVERLY R TINKLENBERG, TE     | 225 NO MAIN ST     | WHITINSVILLE  | MA 01588      | NO MAIN ST      |
| 6A  | 125   |     |      | TINKLENBERG JACOB               | BEVERLY TINKLENBERG           | 225 NO MAIN ST     | WHITINSVILLE  | MA 01558      | 225 NO MAIN ST  |
| 6A  | 126   |     |      | NYE STEVEN R                    |                               | 233 NO MAIN ST     | WHITINSVILLE  | MA 01588      | 233 NO MAIN ST  |
| 6A  | 127   |     |      | CRAY BRIAN R                    | CRAY JULIE A                  | 241 NO MAIN ST     | WHITINSVILLE  | MA 01588      | 241 NO MAIN ST  |
| 6A  | 128   |     |      | WHITINSVILLE REDEVELOPMENT TR   | SIDNEY COVICH TRUSTEE         | 1 MAIN STREET      | WHITINSVILLE  | MA 01588      | NO MAIN ST      |
| 6A  | 149   |     |      | REINHOLT ASHLEY J               | JOHNATHON WILLIAM REINHOLT TE | 18 BUNKERHILL PKWY | WEST BOYLSTON | MA 01583-2004 | 11 OVERLOOK ST  |
| 6A  | 150   |     |      | DEUTSCHE BANK NAT TRUST CO      | C/O IRISH GREGOR              | 546 FOWLER RD      | NORTHBRIDGE   | MA 01534      | 13 OVERLOOK ST  |
| 6A  | 151   |     |      | FALCIONE ROBERT J               |                               | 15 OVERLOOK ST     | WHITINSVILLE  | MA 01588      | 15 OVERLOOK ST  |
| 6A  | 152   |     |      | LSF9 MASTER PARTICIPATION TRUST | US BANK TRUST, NA, TRUSTEE    | C/O % RESICAP      | ATLANTA       | GA 30326      | 17 OVERLOOK ST  |
| 6A  | 153   |     |      | ESCOTT DONNA J                  |                               | 19 OVERLOOK ST     | WHITINSVILLE  | MA 01588      | 19 OVERLOOK ST  |
| 6A  | 161   |     |      | CRUZ, VICTOR RAFAEL             | C/O VS CRUZ REALTY LLC        | 30 KINGSTON ST     | LAWRENCE      | MA 01843      | 60 OVERLOOK ST  |
| 6A  | 162   |     |      | CRUZ VICTOR                     | C/O VS CRUZ REALTY LLC        | 30 KINGSTON ST     | LAWRENCE      | MA 01843      | 62 OVERLOOK ST  |
| 6A  | 163   |     |      | CRUZ VICTOR                     | C/O VS CRUZ REALTY LLC        | 30 KINGSTON ST     | LAWRENCE      | MA 01843      | 64 OVERLOOK ST  |
| 6A  | 164   |     |      | THE BRADY IMPACT                | C/O VS CRUZ REALTY LLC        | 30 KINGSTON ST     | LAWRENCE      | MA 01843      | 66 OVERLOOK ST  |
| 6A  | 165   |     |      | ELDRIDGE LINDA                  | WESLEY ELDRIDGE, TE           | 70 BIRCH ST APT 3  | WORCESTER     | MA 01603-2726 | 68 OVERLOOK ST  |
| 6A  | 178   |     |      | CRUZ VICTOR                     | C/O VS CRUZ REALTY LLC        | 30 KINGSTON ST     | LAWRENCE      | MA 01843      | 58 OVERLOOK ST  |
| 6A  | 218   |     |      | BILLMYER MICHAEL                | JANET BILLMYER, TE            | 5 OVERLOOK ST      | WHITINSVILLE  | MA 01588      | 5 OVERLOOK ST   |
| 6A  | 219   |     |      | HADEN KYLE A                    | C/O TRISHA/DANIEL BEGNOCHE    | 7 OVERLOOK ST      | WHITINSVILLE  | MA 01588      | 7 OVERLOOK ST   |
| 6A  | 276   |     |      | GADOURY HOMES LLC               |                               | 6 RESERVOIR AVE    | MANCHAUG      | MA 01526      | 46 OVERLOOK ST  |
| 6A  | 277   |     |      | 46-56 OVERLOOK ST CONDOMINIUM   | C/O GADOURY HOMES LLC         | P O BOX 495        | MANCHAUG      | MA 01526      | 48 OVERLOOK ST  |
| 6A  | 278   |     |      | 46-56 OVERLOOK ST CONDOMINIUM   | C/O GADOURY HOMES LLC         | Р О ВОХ 195        | MANCHAUG      | MA 01526      | 50 OVERLOOK ST  |
| 6A  | 279   |     |      | 46-56 OVERLOOK ST CONDOMINIUM   | C/O GADOURY HOMES LLC         | P O BOX 495        | MANCHAUG      | MA 01526      | 52 OVERLOOK ST  |
| 6A  | 280   |     |      | 46-56 OVERLOOK ST CONDOMINIUM   | C/O GADOURY HOMES LLC         | P O BOX 495        | MANCHAUG      | MA 01526      | 54 OVERLOOK ST  |
| 6A  | 281   |     |      | 46-56 OVERLOOK ST CONDOMINIUM   | C/O GADOURY HOMES LLC         | PO BOX 495         | MANCHAUG      | MA 01526      | 56 OVERLOOK ST  |

4/11/2019 4:22:01PM Page 4

CHILTON KENDELL A KELLY SUSAN A TAYLOR JOSEPH R 125 BROOKWAY DR SEAN J KELLY C/O JOSEPH R TAYLOR TRUSTEE NORTHBRIDGE, MA 01534 70 MASON RD 344 NO MAIN ST WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 **GUO BINGZHU** PIXLEY GERALD W KUINDERSMA MARK 125 BROOKWAY DR SUSAN M PIXLEY, TE DIANE M BEAULIEU. IT NORTHBRIDGE, MA 01534 56 MASON RD 70 FAIRLAWN ST WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 YOUNGSMA ALVIN H TR HEFFERNAN TIMOTHY M POULIOT JEANNETTE L MARY L YOUNGSMA TR JACQUELYN M LYONS-HEFFERNAN BRAIN G POULIOT, TC 269 NO MAIN ST 48 MASON RD 330-332 NO MAIN ST WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 MONTECALVO JOSEPH J NAU LURANA M BEDIGIAN JAMES D MARGARET B MONTECALVO 66 FAIRLAWN ST 320 NO MAIN ST 279 NO MAIN ST WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 TOWN OF NORTHBRIDGE DAWSON MICHAEL J SHANNAHAN JOHN P C/O TOBIAS M CONIO C/O ANDREW & ABAGAIL YANCO NORTHBRIDGE, MA 01534 60 FAIRLAWN ST 306 NO MAIN ST WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 K T K M REALTY TRUST BAXENDALE JAMES F TRUSTEE WIERSMA BERNARD TRUSTEE 611 LINCOLN ST BAXENDALE REALTY TRUST B & M WIERSMA LIVING TRUST FRANKLIN, MA 02038 52 FAIRLAWN ST 104 SULLIVAN DR WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 CONNOLLY JOHN C THIBODEAU RITA P. LE **BOWMAN RONALD** KAREN J CONNOLLY M STOCKHAUS, L SOHIGIAN, S KURAS, To NANCY BOWMAN 97 TRACEY DRIVE 34 FAIRLAWN ST 82 SULLIVAN DR WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 0'DONNELL GLENN E MARSHALL BRIAN GARRITY ROBERT M DONNA O'DONNELL LYNN MARSHALL 74 SULLIVAN DR 89 MASON RD 26 FAIRLAWN ST WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 LAYDON JOSEPH T WHITAKER CHRISTINA A DESPLECHIIN DAWN M CHRISTINA P LAYDON 20 FAIRLAWN ST WILLIAM D ISON, JT 63 MASON RD WHITINSVILLE, MA 01588 64 SULLIVAN DR WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 CIOFFI ALFRED CAMPBELL JESSICA L GILE CARROLL G

JONATHON S CAMPBELL TE

WHITINSVILLE, MA 01588

352 NO MAIN ST

C/O JOCELYN L ARN

WHITINSVILLE, MA 01588

56 SULLIVAN DR

CYNTHIA CIOFFI

WHITINSVILLE, MA 01588

82 MASON RD

DOBELBOWER JAKE ASHLEY L DOBELBOWER 48 SULLIVAN DR WHITINSVILLE, MA 01588

FLAHERTY MATTHEW T 256 NO MAIN ST WHITINSVILLE, MA 01588 ZANELLA PATRICK T TARA A ZANELLA 254 MASON RD WHITINSVILLE, MA 01588

BROWN MICHAEL L 38 SULLIVAN DR WHITINSVILLE, MA 01588

BALL JASON ANDREW C/O JASON BALL & DONNA EVANS 246 NO MAIN ST WHITINSVILLE, MA 01588 VALIS DAVID O LINDA M VALIS 244 MASON RD WHITINSVILLE, MA 01588

POWERS EILEEN NANCY A & THOMAS P POWERS, JT 25 SULLIVAN DR WHITINSVILLE, MA 01588 TOWN OF NORTHBRIDGE WE BALMER SCHOOL WHITINSVILLE, MA 01588

BARIS CHARLES R CATHERINE F BARIS 230 MASON RD WHITINSVILLE, MA 01588

POWERS EILEEN NANCY A & THOMAS P POWERS, JT 25 SULLIVAN DR WHITINSVILLE, MA 01588 MAHONEY NOMINEE TRUST C/O PATRICK H & ELAINE L MAHONEY 2900 PROVIDENCE RD N NORTHBRIDGE, MA 01534 COURTEMANCHE JOHN JACQUELINE C COURTEMANCHE 216 MASON RD WHITINSVILLE, MA 01588

FREMEAU MARK J LYNNE VALLEY FREMEAU 270 NO MAIN ST WHITINSVILLE, MA 01588 LEGERE PROPERTIES LLC JOHN R LEGERE JR 1 CRESTVIEW DR UXBRIDGE, MA 01569

ARMSTRONG JOHN A MARY L ARMSTRONG PO BOX 172 WHITINSVILLE, MA 01588

OSIECKI DIANE C LIFE ESTATE LAURIE A CIRAS 278 NO MAIN ST WHITINSVILLE, MA 01588

BELLI HEATHER MICHAEL ALDEN, JT 56 LAKE ST WHITINSVILLE, MA 01588 BIGNESS KYLE KERI L BIGNESS 192 MASON RD WHITINSVILLE, MA 01588

BRIAND MAUREEN E TRUSTEE FEEN FAN 89 SULLIVAN DR WHITINSVILLE, MA 01588

AUSTIN LUKE C TE HOLLY L AUSTIN TE 325 SWIFT RD WHITINSVILLE, MA 01588 BROOKS JOHN LEROY 178 MASON RD WHITINSVILLE, MA 01588

ZAWIERUSZYNSKI MARYANN P MICHAEL ZAWIERUSZYNSKI 296 NO MAIN ST WHITINSVILLE, MA 01588 COLLINS RUSSELL D KATHLEEN Y COLLINS 292 MASON RD WHITINSVILLE, MA 01588 STOCKWELL EDWARD R SR MARGARET B STOCKWELL, TE 168 MASON RD WHITINSVILLE, MA 01588

FORNACIARI ANTHONY M C/O MEGHAN M WINCHELL & SUSAN BUJ 286 NO MAIN ST WHITINSVILLE, MA 01588 CHAGNON IRREVOCABLE FAMILY TRUS' PAUL CHAGNON/DENISE ZECCO,TRUSTE 282 MASON RD WHITINSVILLE, MA 01588 KELLEHER SEAN D C/O JEREMY HARRIS/LESLIE R COSGRO 156 MASON RD WHITINSVILLE, MA 01588

POULIOT MICHAEL J ANALIEZEL POULOIT, TE 264 NO MAIN ST WHITINSVILLE, MA 01588 CRAIG FRANCINE C/O A PEREZ & K RIVERA 266 MASON RD WHITINSIVLLE, MA 01588 KOUREY NICHOLAS W C/O SCOTT & SAMANTHA MURDOUGH 146 MASON RD WHITINSVILLE, MA 01588

GUGLIELMO KENNETH R COGLIANDRO PAUL D CRAWFORD RYAN MARIA A GUGLIELMO SUSAN M. COGLIANDRO CARRIE CRAWFORD, TE 138 MASON RD 53 EVERGREEN CIR 115 MASON RD WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 GAMBON THOMAS M TOWN OF NORTHBRIDGE CASEY FAMILY NOMINEE TRUST 130 MASON RD N/A JOHN T & LOIS A CASEY TRS WHITINSIVLLE, MA 01588 WHITINSVILLE, MA 01588 151 MASON RD WHITINSVILLE, MA 01588 SULLIVAN BRIAN J PILEGGI MARK & DAVID PILEGGI JR. TRI SWARTZ PETER S 68 EVERGREEN CR C/O PILEGGI IRREVOCABLE TRUST MARYANNE BELMONTE SWARTZ WHITINSVILLE, MA 01588 65 EVERGREEN CR 96 KERRY LN WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 FORTIN LIVING TRUST VITAGLIANO ROBERT MIEDEMA DAVID III & KATHLEEN E, TRS DENNIS J & BARBARA J FORTIN, TRUSTE MIEDEMA FAMILY LIVING TRUST ELISABETH VITAGLIANO 56 EVERGREEN CR 94 MASON RD 84 KERRY LN NORTHBRIDGE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 HAY CRAIG D PILEGGI DAVID J JR ROBINSON DANIEL P MARY E HAY, TE ALISON PILEGGI, TE 72 KERRY LN 32 EVERGREEN CR 120 MASON RD WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 CAHALANE JONATHAN V DEMBROWSKI STEPHEN J **BOL NICHOLAS P** DENISE E CAHALANE MARIE A DEMBROWSKI KELLY S BOL, TE 20 EVERGREEN CR 103 MASON RD 69 KERRY LN WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 NEWELL KENNETH S GAY BRUCE C DURGIN WILLIAM R BRENDA L NEWELL MARGARET M GAY LINDA F DURGIN 80 DOVER DR 19 EVERGREEN CR 81 KERRY LANE WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 HAWKES CHARLES B DER MUGRDITCHIAN MARK OUILLETTE DAVID J KRISTINE B HAWKES CYNTHIA DER MUGRDITCHIAN MARYANN OUILLETTE 126 FAIRLAWN ST 75 DOVER DR 93 KERRY LN WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 FROMENT KRISTINE A FLEMING KEVIN J BARKLEY JOHN C DAVID MA FROMENT, TE C/O PHILIP & SARAH HANNA BETH A BARKLEY 31 EVERGREEN CR 89 DOVER DR 175 MASON RD WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588 WHITINSVILLE, MA 01588

ROSSELLI ANTHONY J

109 DOVER DR

C/O ANTHONY J ROSSELLI

WHITINSVILLE, MA 01588

BANNING ROBERT A

191 MASON RD

ELIZABETH A BANNING

WHITINSVILLE, MA 01588

MALONE MICHAEL P

MELISSA A MALONE

WHITINSVILLE, MA 01588

41 EVERGREEN CR

COOK BRIAN D KATE E COOK,TE 76 MICHAEL LN WHITINSVILLE, MA 01588

BROOKS AMY L 28 ACORN RD WHITINSVILLE, MA 01588 BLISS BURT J SHERYL L BLISS 298 SWIFT RD WHITINSVILLE, MA 01588

HENDERSON CHRISTOPHER KAREN D HENDERSON 64 MICHAEL LN WHITINSVILLE, MA 01588

STEFANIAK MICHAEL J JR TE ANNE B STEFANIAK 22 ACORN RD WHITINSVILLE, MA 01588 GAGNON DAVID R EDNA I GAGNON, TE 286 SWIFT RD WHITINSVILLE, MA 01588

TOWNSEND DAVID J JESSICA M TOWNSEND 50 MICHAEL LN WHITINSVILLE, MA 01588 PERRY STEVEN M KATHLEEN B PERRY 25 ACORN RD WHITINSVILLE, MA 01588

ARBUCKLE PRISCILLA S JOHN D ARBUCKLE 82 FAIRLAWN ST WHITINSVILLE, MA 01588

CALUORI MICHAEL JR BARBARA WINSOR CALUORI 45 MICHAEL LANE WHITINSVILLE, MA 01588

COE JAMES T 29 ACORN RD WHITINSVILLE, MA 01588

MORRISSETTE PATRICIA F 94 SULLIVAN DR WHITINSVILLE, MA 01588

MUTELL ROBERT A CAROLYN A MUTELL 57 MICHAEL LANE WHITINSVILLE, MA 01588

DUFFY SUSAN B C/O JOSHUA & SARAH RODHE 35 ACORN RD WHITINSVILLE, MA 01588 BAILEY STELLA C , L.E. C/O THOMAS & CHRISTINE SCANLON 236 NO MAIN ST WHITINSVILLE, MA 01588

HEDTLER ASHLEY E SCOTT M HEDTLER 71 MICHAEL LN WHITINSVILLE, MA 01588 LESSARD VICTOR L FRANCES M LESSARD 251 MASON RD WHITINSVILLE, MA 01588

GONYNOR ROBERT 222 NO MAIN ST WHITINSVILLE, MA 01588

KELLEY THOMAS A NICOLE F KELLEY 211 MASON RD WHITINSVILLE, MA 01588 EBBELING RONALD J C/O STEVEN & BRIANNE SUSEL 263 MASON RD WHITINSVILLE, MA 01588

TRAN STEVE 2077 WISTERIA LN MIDDLEBURG, FL 32068-5037

JORRITSMA RICHARD L RIA H JORRITSMA, TE 223 MASON RD WHITINSVILLE, MA 01588 GARD GERALD I JEAN M GARD 277 MASON RD WHITINSVILLE, MA 01588

ROONEY LAWRENCE CHERRY H ROONEY 25 WEST HILL RD MENDON, MA 01756

TUCKER BRANDON P C/O MICHAEL JOSEPH LANG 60 CANTON ST SHARON, MA 02067

SWEETMAN ROBERT D JOANN SWEETMAN 291 MASON RD WHITINSVILLE, MA 01588 CC&L PROPERTIES, LLC GEORGE & LAURA PAPPAS 4 BUDREAU AVE MILLBURY, MA 01527

WHITE MATTHEW J KELLY A WHITE 34 ACORN RD WHITINSVILLE, MA 01588 EDWARDS MICHAEL A MARGARET K EDWARDS 308 SWIFT RD WHITINSVILLE, MA 01588 LORD WILLIAM J DANIEL E LORD 1-3 OVERLOOK ST WHITINSVILLE, MA 01588 SOUTH MIDDLESEX NON-PROFIT HOUSING CORPORATION 7 BISHOP ST FRAMINGHAM, MA 01702

KAMISHLIAN NICOLE C/O STEVEN LLOYD DEARBORN 6-8 CRESCENT ST WHITINSVILLE, MA 01588 NYE STEVEN R 233 NO MAIN ST WHITINSVILLE, MA 01588

SOUTH MIDDLESEX NON-PROFIT HOUSING CORPORATION 7 BISHOP ST FRAMINGHAM, MA 01702

THARSILLE, LLC P O BOX 341 MANCHAUG, MA 01526

CRAY BRIAN R CRAY JULIE A 241 NO MAIN ST WHITINSVILLE, MA 01588

CARROLL DAVID JR MICHELLE A CARROLL PO BOX 333 WHITINSVILLE, MA 01588

BEAUDOIN HARRIET MICHAEL BONET & NATASHA SANTORO, 5 ARCADE ST WHITINSVILLE, MA 01588

WHITINSVILLE REDEVELOPMENT TR SIDNEY COVICH TRUSTEE 1 MAIN STREET WHITINSVILLE, MA 01588

BAKER GREGORY HEATHER BAKER, TE 150 NO MAIN ST WHITINSVILLE, MA 01588 PLANT BRIAN COLLEEN M PLANT, TE 1 ARCADE ST WHITINSVILLE, MA 01588

REINHOLT ASHLEY J JOHNATHON WILLIAM REINHOLT TE 18 BUNKERHILL PKWY WEST BOYLSTON, MA 01583-2004

HUMPHREY BRANDEN J SHARON R HUMPHREY, TE PO BOX 467 210 ELM ST GOFFSTOWN, NH 03045 MCLAUGHLIN NANCY A COLLEEN M MCLAUGHLIN 4 CRESCENT STREET WHITINSVILLE, MA 01588

DEUTSCHE BANK NAT TRUST CO C/O IRISH GREGOR 546 FOWLER RD NORTHBRIDGE, MA 01534

MELLO PAUL J, SR DONNA MELLO, TE 1-3 CRESCENT ST WHITINSVILLE, MA 01588 OIKLE ARNOLD L CAROL LEE OIKLE 329 HAZEL ST UXBRIDGE, MA 01569

FALCIONE ROBERT J 15 OVERLOOK ST WHITINSVILLE, MA 01588

KENT RONALD R DAVIDE E TREMBLAY,TE 5-7 CRESCENT ST WHITINSVILLE, MA 01588

WHITE RONALD L KATHLEEN A WHITE 88 NO MAIN ST WHITINSVILLE, MA 01588 LSF9 MASTER PARTICIPATION TRUST US BANK TRUST, NA, TRUSTEE C/O % RESICAP 3630 PEACHTREE RD NE SUITE 150 ATLANTA, GA 30326

MAYER CHRISTOPHER J JULIE LAPLANTE 18-22 CRESCENT ST WHITINSVILLE, MA 01588

DROSIDIS KONSTANTINOS ELENI DROSIDIS 199 NO MAIN ST WHITINSVILLE, MA 01588

ESCOTT DONNA J 19 OVERLOOK ST WHITINSVILLE, MA 01588

HAGGERTY RICHARD R C/O MICHAEL RAAD & KELLY ROYCE 14-16 CRESCENT ST WHITINSVILLE, MA 01588

TINKLENBERG JACOB K BEVERLY R TINKLENBERG, TE 225 NO MAIN ST WHITINSVILLE, MA 01588 CRUZ, VICTOR RAFAEL C/O VS CRUZ REALTY LLC 30 KINGSTON ST LAWRENCE, MA 01843

GUIOU DIANE 10-12 CRESCENT ST WHITINSVILLE, MA 01588 TINKLENBERG JACOB BEVERLY TINKLENBERG 225 NO MAIN ST WHITINSVILLE, MA 01558

CRUZ VICTOR C/O VS CRUZ REALTY LLC 30 KINGSTON ST LAWRENCE, MA 01843 CRUZ VICTOR C/O VS CRUZ REALTY LLC 30 KINGSTON ST LAWRENCE, MA 01843

THE BRADY IMPACT C/O VS CRUZ REALTY LLC 30 KINGSTON ST LAWRENCE, MA 01843

ELDRIDGE LINDA WESLEY ELDRIDGE, TE 70 BIRCH ST APT 3 WORCESTER, MA 01603-2726

CRUZ VICTOR C/O VS CRUZ REALTY LLC 30 KINGSTON ST LAWRENCE, MA 01843

BILLMYER MICHAEL JANET BILLMYER, TE 5 OVERLOOK ST WHITINSVILLE, MA 01588

HADEN KYLE A C/O TRISHA/DANIEL BEGNOCHE 7 OVERLOOK ST WHITINSVILLE, MA 01588

GADOURY HOMES LLC 6 RESERVOIR AVE MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM C/O GADOURY HOMES LLC P O BOX 495 MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM C/O GADOURY HOMES LLC P O BOX 495 MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM C/O GADOURY HOMES LLC P O BOX 495 9 RESERVOIR AVE MANCHAUG, MA 01526 46-56 OVERLOOK ST CONDOMINIUM C/O GADOURY HOMES LLC P O BOX 495 9 RESERVOIR AVE MANCHAUG, MA 01526

46-56 OVERLOOK ST CONDOMINIUM C/O GADOURY HOMES LLC PO BOX 495 0 RESERVOIR AVE MANCHAUG, MA 01526 February 28, 2019

Mr. James Sheehan, Building Inspector Town of Northbridge Aldrich School Town Hall Annex 14 Hill Street Whitinsville, MA 01588 DORE & WHITTIER ARCHITECTS, INC.

RE: W. Edward Balmer Elementary School – Zoning Bylaws Analysis

Dear Jim,

Following is our analysis of the Northbridge Zoning Bylaws as they apply to the project to construct a new Grades PK-5 elementary school on the site of the existing Balmer school, which will also involve the Vail Field parcel as part of the project. As requested, we are showing where the project meets the requirements of the bylaws, where it does not, and the mitigating factors that will demonstrate in our professional opinion, that there will be no substantial detriment to the public good or undue burdens placed on the town if it allows the non-conforming aspects of the project to be approved by waiver or variance. This letter is not an exhaustive analysis; only portions of the Zoning Bylaw that have direct bearing on the proposed development are included here.

#### I. LAND USE, VAIL FIELD

The Town Legal Counsel, KP Law, through its deed research, has determined that Vail Field is not subject to Article 97 (Change of Use of Public Parklands) regulations (letter attached). Furthermore, all existing athletic facilities are proposed to be replaced in-kind, in a new configuration, as part of the proposed site plan.

#### II. ZONING BYLAWS ANALYSIS

#### 173-4 ZONING MAP:

The project site sits partially in two zones. The south portion (Crescent Street frontage) including Vail Field and some portion of the school parcel sits in zone R-5. The rear portion which includes the balance of the school parcel sits in zone R-2. The majority of the new school is located in the R-2 zone, which is used below for side yard setback calculations. The site is not part of any Overlay District, and is not located in a Floodway or Flood Plain district.



Figure 1 - Northbridge Zoning Map (partial) - May 2016, with property identified

ARCHITECTS
PROJECT MANAGERS

260 Merrimac Street Bldg 7 Newburyport, MA 01950 978.499.2999 ph 978.499.2944 fax

212 Battery Street Burlington, VT 05401 802.863.1428 ph 802.863.6955 Mr. James Sheehan, Building Inspector BALMER – Zoning Analysis February 28, 2019 Page 2 of 3

#### 173-12 USE REGULATIONS:

Community Public Educational Facilities are a permitted use in Zones R-2 and R-5. (Table 173-12, Att. 2)

#### 173-13.2 EROSION CONTROL:

The project will be subject to MA law and guidelines for construction erosion control, and an Erosion Control Plan will be submitted to the Town as part of the construction permit process. (Table 173-18.2. C and D)

#### 173-20 HEIGHT AND BULK REGULATIONS:

TABLE 1: Dimensional Requirements per Zoning Bylaws (173-20 + 173 - Att. 1)

| TABLE II. BIIIICIIGIOI                                          | Min. Lot<br>Area<br>(sq. ft.) | Min.<br>Contiguous<br>Frontage | Min. Front<br>Yard<br>Setback | Min. Side<br>Yard Setback   | Min. Rear<br>Yard<br>Setback | Max. Height in Stories | Max. Height<br>in Feet* | Max. Total<br>Lot<br>Coverage<br>(%) |
|-----------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------|------------------------------|------------------------|-------------------------|--------------------------------------|
| Required R-2                                                    | 20,000                        | 100'                           | 40'                           | 10'                         | 40'                          | 2.5                    | 35'                     | 20%                                  |
| Required R-5                                                    | 5,000                         | 60'                            | 15'                           | 8'                          | 20'                          | 3                      | 45'                     | 50%                                  |
| Existing**                                                      | 1,310,285                     | 730'                           | 30'                           | 50'                         | 310'                         | 2                      | 23'-6"'                 | 4 %                                  |
| Proposed New Project -<br>Actual Measurements<br>(Re. R-2 zone) | 1,310,285                     | 730'                           | 565.64'                       | 384.7' west<br>42.65' east* | 307.15'                      | 3 *                    | 44'-4" *                | 5.65 %                               |

<sup>\* &</sup>quot;Any maximum height permitted shall not apply to a community facility provided that the side and rear yards or setbacks required in the district for the highest permitted principal structure shall be increased two feet in width for each foot by which the height of such structure exceeds the height permitted in the district." See calculation below.

#### 173-20 SIDE YARD SETBACK CALCULATION:

Exception for Community Facilities (Sec 173-20: Table Notes) Height 43'-10" to cornice; nominally 44'-4" to average grade.

 R-2 Allowable Height =
 35'

 Proposed Height =
 44'-4"
 (44.33')

 Height Delta =
 9.33'

 Setback multiplier =
 2.0

 Added Setback
 18.66'

 Base Side Setback
 10'

Required Side Setback 28.66'

#### Actual Side yard Setback 42.65' at northeast corner

#### 173-27 OFF-STREET PARKING AND LOADING REQUIREMENTS:

For reference, the existing structure has 96 paved, striped, legitimate parking spaces, and two loading spaces adjacent to the loading dock.

#### Parking:

Zoning Requirement: Community Facilities - Schools: 1 space per 300 NSF (table in Sec 173-27.C)

Building NSF = 111,568 NSF

Zoning Requires 372 parking spaces

Desired Parking Program per District Working Group:
156 Staff + 24 Visitors
180 spaces
Additional Event Parking
89 spaces

Total Parking on Site Plan 246 spaces
Seeking Variance or Waiver for 126 spaces

We are submitting an "Overflow Parking Plan" that will yield an additional 54 spaces (drawing attached). This brings the total on-site parking capacity to 300 spaces.

<sup>\*\*</sup> Existing calculations are based on property ID: 7-138 (parcel the school building sits within.)

Mr. James Sheehan, Building Inspector BALMER – Zoning Analysis February 28, 2019 Page 3 of 4

#### Loading Areas:

Zoning requires 1 per 7,500 NSF + 1 per 15,000 NSF in excess (table 2 in Sec.173-27.C)

Building NSF = 111,568 NSF

Zoning requires: 8 loading spaces
Project has: 2 loading spaces
Seeking Variance or Waiver for 6 loading spaces

Per the request of the Technical Review Committee at our 1/23/19 meeting, we are submitting a verification of the school's parking needs as well as a Parking and Event Analysis which shows that there are no likely scenarios that will exceed the total onsite parking capacity. Most scenarios will easily be accommodated with the proposed 246 spaces, and the few high-capacity events will be accommodated using the Overflow plan for 300 spaces. (Documents attached)

#### Additional Zoning Requirements:

Proposed Parking and Loading Spaces are all on the same lot as the building served. (Sec.173-27.D.1, .2)

Proposed spaces are 9' x 18' with 24' drive aisle in lot configurations. Parallel parking spaces in the Overflow Plan are 9' x 22' with a minimum 12' drive lane accessing them. (Sec.173-27.D.3)

The proposed number of driveways accessing the public way (Crescent Street) is limited to two. (Sec.173-27.D.4)

Proposed two-way drive ways are 22 feet wide, two lanes of 11 feet. (Sec.173-27.D.5)

Loading spaces shall be 600 SF for the first 7,500 NSF and 500 SF for each additional 15,000 NSF. There are two spaces of 600 SF. The project has two proposed loading spaces of 900 SF that will accommodate a semi-trailer or straight truck. (Sec.173-27.D.9)

Handicapped parking spaces are provided in accordance with MAAB and ADA requirements. There are 8 H/C spaces on the site, where a minimum of 7 are required. (Sec.173-27.D.12; MAAB 521 CMR 23.2.1)

The balance of regulations 173-27.D 1-13 have been incorporated in the site plans.

The proposed plan includes landscaping plant materials (primarily trees to screen and shade the parking lot areas. (173-27.F.3 – (a)-(c) )

#### 173-28 AREA, CONSTRUCTION AND LIGHTING STANDARDS

The west parking lot is approximately 100 feet and 20-30 feet down-slope from neighbors to the west. Parking lot islands feature trees which will screen the parking from views from above. It is our interpretation that solid screen walls are not required in this condition. The east parking is screened by both solid 6' stockade fencing at the property line, and dense evergreen shrubbery between the fence and the parking lots. Other provisions of this section are being complied with (D - lighting) or are not applicable (B, C). (173-28.A-D)

Please contact me if you have any question on the above material, and we look forward to continuing the permitting process for this project.

Sincerely,

**DORE & WHITTIER ARCHITECTS, INC.** 

Architects ■ Project Managers

Tom Hengelsberg, AIA Project Manager

Attachments cc: File



August 31, 2017

101 Arch Street, Boston, MA 02110 Tel: 617.556.0007 | Fax: 617.654.1735 www.k-plaw.com

David J. Doneski ddoneski@k-plaw.com

Northbridge School Building Committee Town Hall 7 Main Street Whitinsville, MA 01588

Re: W. Edward Balmer Elementary School, Executive Office of Energy and Environmental Affairs Article 97 Land Disposition Policy

Dear Members of the School Building Committee:

I have reviewed the identified deed for the Balmer School site – deed of Whitin Machine Works to Town of Northbridge dated April 24, 1963 and recorded with the Worcester Registry of Deeds in Book 4369, Page 342. The deed conveyed 4 parcels to the Town. Parcel 1 is land on the northwesterly side of Crescent Street and the northeasterly side of North Main Street, said to contain 9.04 acres and Parcel 2 is a parcel northwesterly of Parcel 1 said to contain 21.04 acres. The copy of the deed provided by the Assessors' office includes the annotation that the land conveyed encompasses Assessors' Map 7, parcels 138 and 141. According to the Assessors' property card record for the Balmer School property, the school site has an address of 11 Crescent Street, is shown as parcel 138 on Assessors' Map 7, and contains 30.04 acres. (Assessors' Map 7 shows parcel 138 as containing 21.04 acres, with the designation "Balmer School" and parcel 141 as containing 9.04 acres.) Accordingly, it is my understanding that the school site is Parcel 1 and Parcel 2 described in the deed. (Parcel 3 is described as land on the northerly side of Plummer Road a/k/a Church Street, between Providence Road and Quaker Street, consisting of 2.51 acres; and Parcel 4 is described as land on the westerly side of Linwood Avenue, consisting of 30,014 square feet.)

The deed to the Balmer School site includes no statement of use limitations or restriction on Town use of the land. Therefore, it is my opinion that the deed does not impose a limitation that would make the site subject to Article 97 of the Amendments to the Massachusetts Constitution, which includes a prohibition against the sale or change in use of public parkland without special approval by a two-thirds roll call vote of the Legislature.

Article 97 can apply when land acquired without any use restriction is subsequently subjected to a restriction by a document recorded with the Registry of Deeds. See Smith v. City of Westfield, 90 Mass. App. Ct. 80, 82 (2016). It is my understanding that the Town is not aware of any such recorded restriction or similar action for the Balmer School site. My on-line search of Worcester Registry of Deeds records, by street – Crescent Street, did not reveal any subsequent recorded restriction.



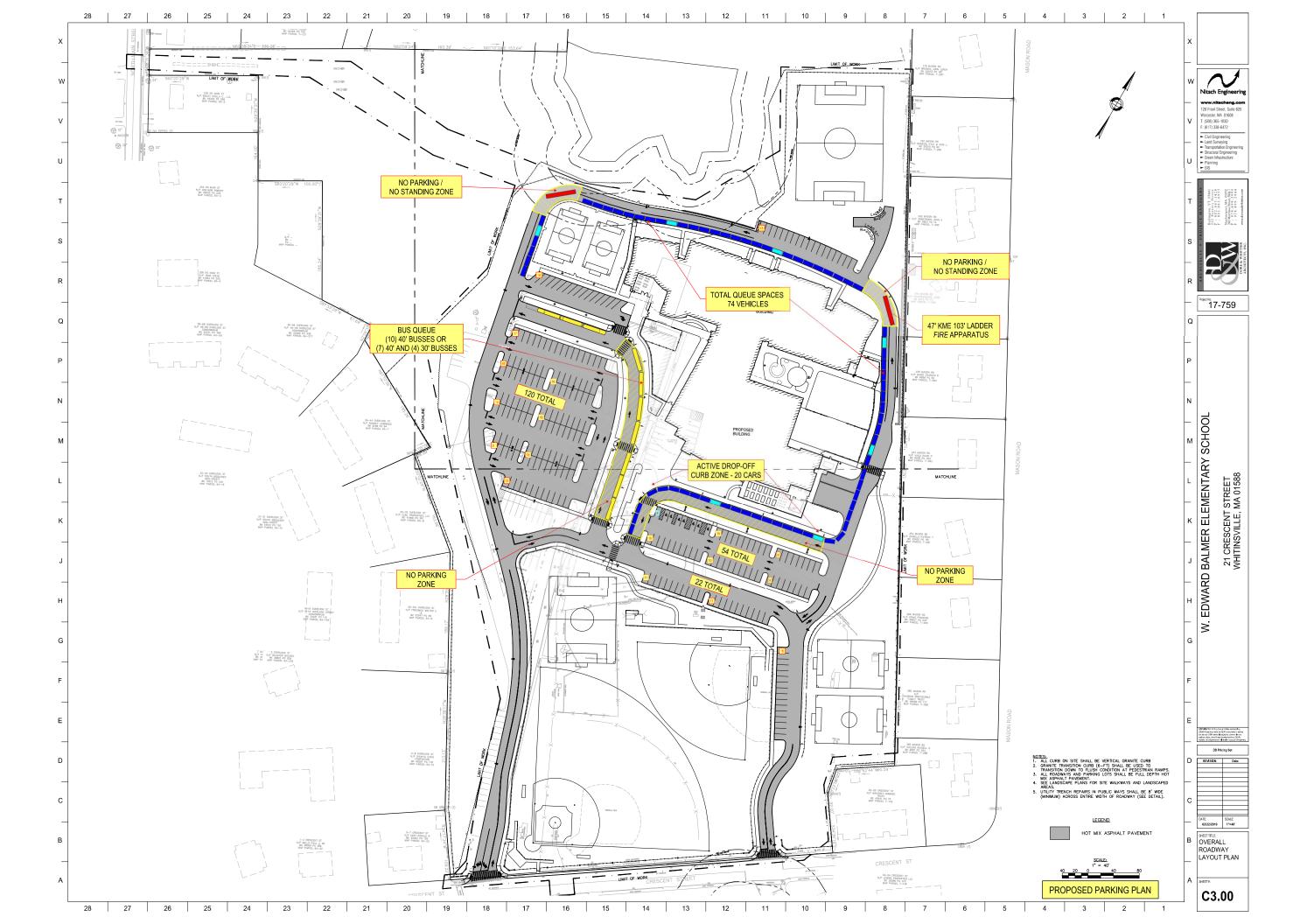
Northbridge School Building Committee August 31, 2017 Page 2

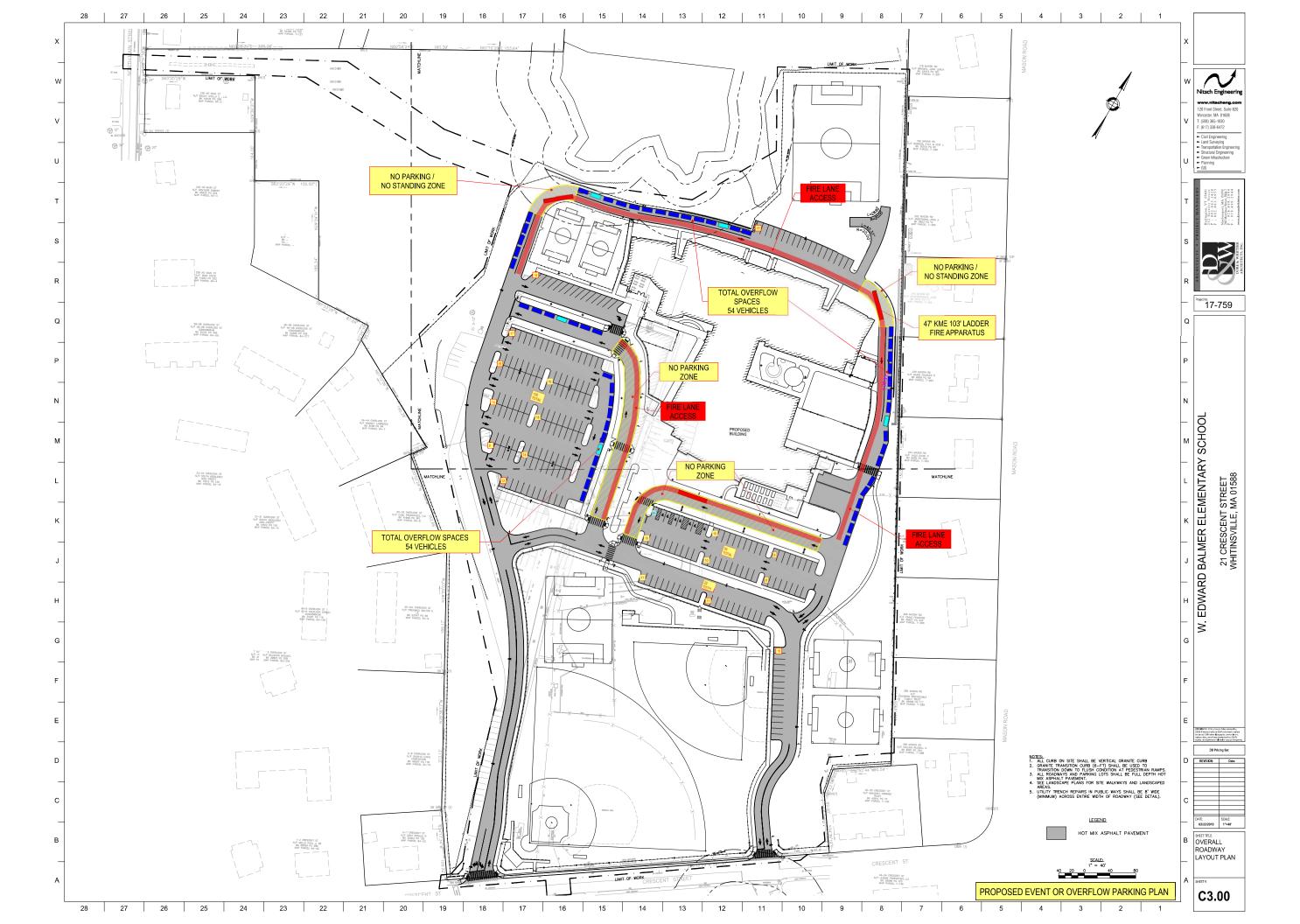
You have also informed me that a portion of the Balmer School site contains a recreational field area, known as Vail Field. In that regard, I reviewed certain votes taken at the March 12, 1963 Annual Town Meeting regarding the Town's acceptance of land from Whitin Machine Works – one parcel of approximately 6.22 acres "known as Vail Field . . . to be used for recreational purposes only" (Article 13) and one parcel of approximately 23.25 acres "adjacent to Vail Field . . . to be used as a school site only" (Article 16). Although the stated acreage for these two parcels is different from the parcel sizes reflected in the deed referenced above and the parcel sizes being carried on the Northbridge Assessors' records, it is my understanding that the votes refer to the parcels conveyed by that deed. The Vail Field designation for the smaller parcel appears to pre-exist any transfer to the Town from Whitin Machine Works. In any event, though, creation of a restriction for purposes of Article 97 of the Amendments to the Massachusetts Constitution requires an instrument recorded at the Registry of Deeds. See Mahajan v. Department. of Environmental Protection, 464 Mass. 604, 615 – 616 (2013), citing Selectmen of Hanson v. Lindsay, 444 Mass. 502 (2005). No such instrument has been identified. Accordingly, the existence of these votes, with no restrictive instrument recorded at the Registry of Deeds, does not alter the opinion that the Balmer School site is not subject to Article 97.

In accordance with the foregoing, and in response to your further question of August 28, 2017, it is my view that the so-called Vail Field portion of the site may be used for non-recreational purposes and that the other portions of the site may be used for recreational purposes.

Please contact me if you have any further questions on this matter.

Very truly yours,


David J. Doneski


DJD/man

cc.

Board of Selectmen

589268 v.2/NBRI/0001





#### DESIGN DEVELOPMENT ZONING SUBMISSION - PARKING ANALYSIS

**TABLE 1 - STAFF COUNT** 

Verified with School Administration 1/31/19

| SPACE                   | QUAN | ADULTS<br>BASED<br>IN<br>EACH | FTE | STUDENTS<br>IN EACH <sup>1</sup> | TOTAL<br>STUDENTS | Remarks                                              |
|-------------------------|------|-------------------------------|-----|----------------------------------|-------------------|------------------------------------------------------|
| PK CRS                  | 4    | 1                             | 4   | 18                               | 72                |                                                      |
| PK-K SPED               | 1    | 1                             | 1   | 12                               | 12                |                                                      |
| K CRS                   | 9    | 1                             | 9   | 18                               | 162               |                                                      |
| GRADE 1-5 CRS           | 40   | 1                             | 40  | 23                               | 920               |                                                      |
| 1-2 SPED                | 2    | 3                             | 6   | 12                               | 24                |                                                      |
| 3-5 SPED                | 2    | 3                             | 6   | 12                               | 24                |                                                      |
| RESOURCE ROOM           | 3    | 1                             | 3   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| STUDENT SERVICES        | 2    | 26                            | 52  |                                  |                   | PROFESSIONALS WORK IN CLASSROOMS ABOVE               |
| ART                     | 2    | 1                             | 2   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| MUSIC                   | 2    | 1                             | 2   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| GYMNASIUM               | 1    | 2                             | 2   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| LIBRARY                 | 1    | 2                             | 2   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| MAKER                   | 1    | 1                             | 1   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| OT/PT                   | 1    | 2                             | 2   |                                  |                   | STUDENTS COUNTED ABOVE                               |
| ADMIN + NURSE           |      |                               | 16  |                                  |                   | INCL PRINCIPAL OFFICES ON LEVEL 2+3                  |
| TITLE 1 OFFICE          |      |                               | 1   |                                  |                   |                                                      |
| KITCHEN                 |      |                               | 5   |                                  |                   |                                                      |
| MAINTENANCE STAFF       |      |                               | 2   |                                  |                   |                                                      |
| SUBTOTAL - FTE          |      |                               | 156 |                                  | 1214              |                                                      |
| VISITORS                |      |                               |     |                                  |                   |                                                      |
| ITINERANT PROFESSIONALS |      |                               | 2   |                                  |                   | Not full time - in building for no more than 2 hours |
| VOLUNTEERS              |      |                               | 4   |                                  |                   | Sporadic, usually present for most of the school day |
| VISITORS                |      |                               | 18  |                                  |                   | 3 meetings a day x 6 people, could be concurrent     |
| SUBTOTAL                |      |                               | 24  |                                  |                   |                                                      |
| TOTALS                  |      |                               | 180 |                                  | 1214              |                                                      |

<sup>&</sup>lt;sup>1</sup> Reflects maximum enrollment, not actual present enrollment.

February 28, 2019

#### **TABLE 2 – PARKING AND EVENT ANALYSIS**

**DESIGN DEVELOPMENT ZONING SUBMISSION - PARKING ANALYSIS** 

Proposed Parking Spaces 246 + Overflow Spaces 54 = 300 Total Spaces Onsite Maximum

Table shows the maximum number of cars parked for any given time period/ scenario. Cells highlighted yellow indicate scenario totals above the number of conventional spaces. None of the scenarios exceed the total onsite maximum number of parking spaces, including overflow spaces.

| TIME OF DAY       | EVENT/ CONDITION                   | FREQUENCY       | PARKING<br>(LONG<br>TERM) | PARKING<br>(S/T<br>VISITOR<br><2 hours) | QUEUE<br>SPACE | LOADING<br>SPACE<br>(Semi<br>Truck) | REMARKS                                                                                                                                                                                           |
|-------------------|------------------------------------|-----------------|---------------------------|-----------------------------------------|----------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCHOOL DAY        |                                    |                 |                           |                                         |                |                                     |                                                                                                                                                                                                   |
| 6:00 AM – 7:45 AM | Supply Deliveries                  | Daily M-F       |                           |                                         |                | 2                                   | Various deliveries throughout week, rarely more than one truck at a time.                                                                                                                         |
| 6:00 AM – 2:00 PM | Kitchen & Maint. staff in building |                 | 7                         |                                         |                |                                     |                                                                                                                                                                                                   |
| 6:30 AM – 4:00 PM | Teachers and Staff in Building     | Daily M-F       | 156                       | 24                                      |                |                                     |                                                                                                                                                                                                   |
| 6:45 AM – 7:55 AM | Early Care Drop-off                | Daily M-F       |                           | 10                                      |                |                                     | Indicates expected max cars at any one time.                                                                                                                                                      |
| 7:45 AM – 8:00 AM | Pre-K Parent Park & Drop-Off       | Daily M-F       |                           | 16                                      |                |                                     | Park & Drop Lot assumes 16 live spaces with 2-3 minute use;                                                                                                                                       |
|                   | Arrival                            | ·               |                           |                                         |                |                                     | additional vehicles can use signed north row of west parking lot                                                                                                                                  |
| 8:00 AM – 8:15 AM | Parent Drop-Off & Arrival          | Daily M-F       |                           |                                         | 74             |                                     | Assume live spaces in a moving line; 74 vehicles at any one time                                                                                                                                  |
| 8:00 AM – 2:30 PM | Parent Volunteers                  | Daily M-F       | 4                         |                                         |                |                                     |                                                                                                                                                                                                   |
| 8:00 AM – 4:00 PM | Itinerant Staff in Building        | Daily M-F       |                           | 2                                       |                |                                     |                                                                                                                                                                                                   |
| 8:00 AM – 4:00 PM | Long Term Visitors                 | Daily M-F       |                           | 18                                      |                |                                     |                                                                                                                                                                                                   |
| 2:45 PM – 3:15 PM | Dismissal and Parent Pick-up       | Daily M-F       |                           |                                         | 74             |                                     | Some parents may queue earlier than this; 74 vehicles at any one time, additional early cars may park in ~89 vacant site spaces.  Dismissals will be staged to even out the peak flow of traffic. |
| AFTERNOON         |                                    |                 |                           |                                         |                |                                     |                                                                                                                                                                                                   |
| 3:00 PM – 5:00 PM | Student Game – Soccer Fields       | Spring/Fall M-F | 168                       |                                         |                |                                     | (32 players [assume 50% car factor] + 6 adults + 6 additional spectators) X 6 soccer fields = 168 cars                                                                                            |
| 3:00 PM - 5:00 PM | Student Game – Gymnasium           | Winter M-F      | 47                        |                                         |                |                                     | Assumes basketball game: 20 players, 6 adults, 40 parents, 1 custd.                                                                                                                               |
| 3:00 PM - 5:00 PM | School Meetings – Faculty/Staff    | Daily M-TH      | 127                       |                                         |                |                                     | Assume all-staff meeting (peak count), 1 custodian                                                                                                                                                |
| 3:00 PM - 5:00 PM | School Club Meeting - Staff        | 2x per week     | 5                         |                                         |                |                                     | Assume 20 student members, 4 adults, 1 custodian                                                                                                                                                  |

#### W.E. BALMER ELEMENTARY SCHOOL

#### **DORE & WHITTIER ARCHITECTS**

#### **DESIGN DEVELOPMENT ZONING SUBMISSION - PARKING ANALYSIS**

**EVENING** Night 1 Parent Open House PK-K 4:30 PM - 5:30 PM 1x per semester 260 246 students; assume one car per household; 14 staff 216 5:30 PM - 6:30 PM Night 1 Parent Open House Gr 1 196 students; assume one car per household; 20 staff 1x per semester 216 6:30 PM - 7:30 PM Night 1 Parent Open House Gr 2 1x per semester 196 students; assume one car per household; 20 staff 4:30 PM - 5:30 PM Night 2 Parent Open House Gr 3 216 1x per semester 196 students; assume one car per household; 20 staff 5:30 PM - 6:30 PM 216 Night 2 Parent Open House Gr 4 196 students; assume one car per household; 20 staff 1x per semester 216 6:30 PM - 7:30 PM Night 2 Parent Open House Gr 5 196 students; assume one car per household; 20 staff 1x per semester 5:30 PM - 9:00 PM Community Meeting - Small Daily T-W-TH 51 50 adult participants; assume one car per each, 1 custodian (Media Center or Quiet Lunch L) 5:30 PM - 9:00 PM Community Meeting – Medium 1x per 2 weeks 206 195 seats, 10 participants; 1 custodian (Café 1 or Café 2) 275 5:30 PM - 9:00 PM Community Meeting – Large 508 seats, assume 50% car factor (254), 20 participants; 1 1x per year (Gymnasium) custodian 6:30 PM - 8:30 PM Perform. Art Event - Concert, Play 154 190 seats, assume 75% car factor (143), 10 adults; 1 custodian 2 x per semester (Café 1) 5:30 PM -7:00 PM Community Sport -Early Game Winter/ Daily M-F 122<sup>2</sup> 148 bleacher seats, assume 75% car factor (111), 10 adults; 1 (Gymnasium) custodian 7:00 PM - 8:30 PM Community Sport -Middle Game Winter/ Daily M-F 122<sup>2</sup> 148 bleacher seats, assume 75% car factor (111), 10 adults; 1 (Gymnasium) custodian 122<sup>2</sup> 148 bleacher seats, assume 75% car factor (111), 10 adults; 1 8:30 PM - 10:00 PM Community Sport -Late Game Winter/ Daily M-F custodian (Gymnasium) **WEEKEND USE** 8:00 AM - 3:00 PM Youth Soccer practices Fall/ Saturdays 264 (32 players [1 parent car per each] + 6 adults + 6 additional spectators) X 6 soccer fields = 264 cars (Fields) Youth Softball/ Baseball (18 players [1 parent car per each] + 6 adults + 10 additional 8:00 AM - 5:00 PM 68 Spring/ Saturdays (Diamonds) spectators) X 2 baseball diamonds = 68 cars Community Adult Soccer 3:00 PM - 6:30 PM 40 Fall/ Saturdays, (30 players [1 car per each] + 10 additional spectators) X 1 soccer Sundays (Fields) fields = 40 cars (18 players [1 parent car per each] + 6 adults + 40 additional Community Babe Ruth Baseball 64 3:00 PM - 7:00 PM Spring/ Saturdays,

Sundays

Existing Parking Spaces - striped, paved, legitimate spaces: 96

(Large Diamond)

February 28, 2019

spectators) X 1 baseball diamonds = 64 cars

<sup>&</sup>lt;sup>2</sup> This number assumes a competition event with full bleachers. Most community sporting events in the gym will be much more sparsely attended.

## THE NEW W. EDWARD BALMER SCHOOL

NORTHBRIDGE, MASSACHUSETTS



## PLANNING BOARD SUBMISSION

SMMA











Project Management

# DD SITE & LANDSCAPE DESIGN PLAN

246 parking spaces

74 parent drop-off queue spaces

• 20 car active drop off curb zone

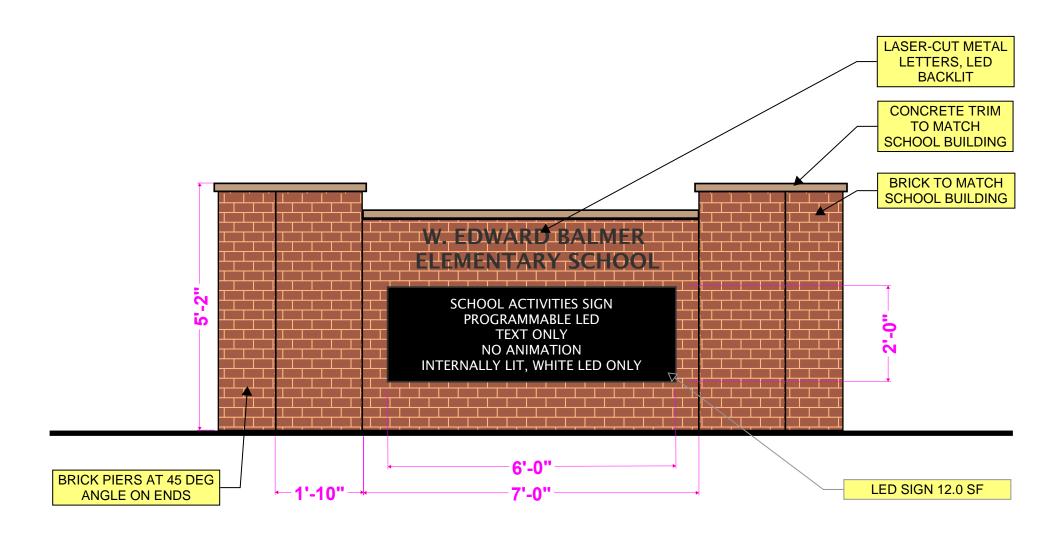
Bus queue: (10) 40' busses or (7) 40' busses and (4) 30' busses or vans






















W. EDWARD BALMER ELEMENTARY SCHOOL

**DORE & WHITTIER ARCHITECTS** 

LANDSCAPE SIGNAGE DETAIL - MAIN SITE ENTRANCE AT CRESCENT STREET

SCALE: 1/2" = 1'-0" APRIL 9, 2019

# RAZAR SERIES-LED

### SPECIFICATIONS

### **OPTICAL HOUSING**

Heavy cast low copper aluminum (A356 alloy; <0.2% copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance <± .002") to facilitate thermal transfer of heat to housing and cooling fins. Solid barrier wall separates optical and electrical compartments. The optical and electrical compartments are integrated to create one assembly. Minimum wall thickness is .188".

### ELECTRICAL HOUSING w/INTEGRATED ARM

Heavy cast low copper aluminum (A356 alloy; <0.2% copper) assembly with integral cooling ribs surrounding the electrical compartment and a flat surface on the top of the arm to accommodate a photocell receptacle. Solid barrier wall separates optical and electrical compartments. The optical compartment and electrical compartment with the integrated support arm combine to create one assembly. Minimum wall thickness is .188". Cast and hinged driver assembly cover is integrated with wiring compartment cover.

### **PLED**™OPTICS

Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. LED optics completely seal each individual emitter to meet an IP66 rating. In asymmetric distributions, a micro-reflector inside the refractor re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H12 acrylic. Each LED refractor is sealed to the PCB over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. LED refractors produce standard site/area distributions. Panels are field replaceable and field rotatable in 90° increments.

### LED DRIVER(S)

Constant current electronic with a power factor of >.90 and a minimum operating temperature of -40°F/-40°C. Driver(s) is/are UL and cUL recognized and mounted directly against the Electrical Housing to facilitate thermal transfer, held down by universal clamps to facilitate easy removal. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of 120-277V, 50/60Hz or 347V-480V, 50,60Hz. (0 - 10V dimmable driver is standard. Driver has a minimum of 3KV internal surge protection. Luminaire supplied with 20KV surge protector for field accessible installation.)

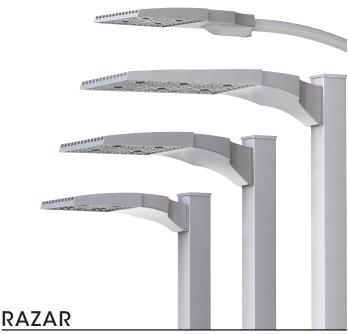
### LED EMITTERS

High output LED's are utilized with drive currents ranging from 350mA to 1050mA. 70CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.

### AMBER LED'S

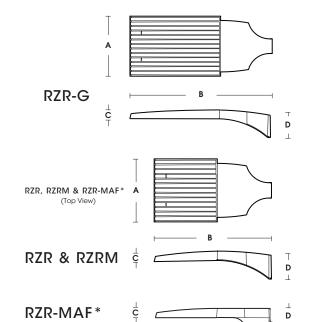
**PCA** (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS lamps and have a slight output in the blue spectral bandwidth. **TRA** (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.

### **FINISH**


Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at 140°F. Four step media blast and iron phosphate pretreatment for protection and paint adhesion. 400°F bake for maximum hardness and durability.

### MAST ARM FITTER/ELECTRICAL HOUSING

Replaces standard Electrical Housing. Fits standard 2 3/8" O.D. horizontal tenon. Two (2) straps with two (2) bolts each encircle the lower half of the tenon. Upper half of the tenon rests on self-centering steps that position the angle of the luminaire at 0°, +1.5°, +1.5 or +3° up from the horizontal. All hardware is stainless steel.


### PROJECT NAME:

PROJECT TYPE:



(MODELS: RZRM, RZR, RZR-G & RZR-MAF\*)

PATENT PENDING



| FIXTURE | Α      | В             | С            | D            |
|---------|--------|---------------|--------------|--------------|
| RZR-G   | 15"    | <b>36.5"</b>  | <b>3"</b>    | <b>7"</b>    |
|         | 381mm  | 927mm         | 76mm         | 187mm        |
| RZR     | 14.75" | <b>28.25"</b> | <b>2.75"</b> | <b>6.5"</b>  |
|         | 375mm  | 718mm         | 70mm         | 165mm        |
| RZRM    | 11.5"  | <b>22"</b>    | <b>2.5"</b>  | <b>5.25"</b> |
|         | 292mm  | 559mm         | 64mm         | 133mm        |
| RZR-MAF | 15"    | <b>28.25"</b> | <b>2.5"</b>  | <b>4"</b>    |
|         | 381mm  | 724mm         | 64mm         | 102mm        |

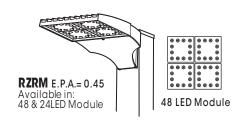
<sup>\*</sup>DLC PENDING AS OF 7/17







2018358




# RAZAR SERIES-LED

### **PLED® MODULES** POLE DRILLING TEMPLATE POUR DE LA COMPANION DE LA COM 2" (51mm) 2.75" (70mm) FOR RZRM 1.**25"** (32mm) (102mm) FOR **RZR** WIREWAY .563" DIA. (14mm) **RZR-G** E.P.A.= 0.76 **RZR** E.P.A.= 0.67 Available in: 120 & 80LED Module Available in: 80 & 40LED Module 80 LED Module .406" DIA. (10mm) (3) HOLES 120 LED Module

# Approximate Average Lumens - 4000K (Lumens median of all distributions)

|     |       | 350mA  |             |       | 525mA  |             |       | 700mA  |             |       | 1050mA |              |
|-----|-------|--------|-------------|-------|--------|-------------|-------|--------|-------------|-------|--------|--------------|
|     | Watts | Lumens | HID Eq.      |
| 24  | 28    | 3541   | 50          | 41    | 5058   | 70-<br>100  | 53    | 6567   | 100         | 81    | 8773   | 150-<br>175  |
| 40  | 45    | 5997   | 70-<br>100  | 66    | 8653   | 100-<br>150 | 87    | 10995  | 175         | 134   | 14647  | 200-<br>250  |
| 48  | 55    | 7046   | 100         | 81    | 10018  | 150-<br>175 | 105   | 12600  | 200         | 160   | 17566  | 250          |
| 80  | 87    | 11622  | 175-<br>200 | 131   | 16736  | 200-<br>250 | 174   | 21235  | 400         | 266   | 28190  | 450-<br>575  |
| 120 | 127   | 17405  | 250         | 195   | 24860  | 450         | 260   | 31592  | 575-<br>750 | 396   | 43323  | 750-<br>1000 |



Spec/Order Example: RZR/PLED-IV/80LED-700mA/CW/277/RAL-8019-S

| S P                                     | E C / O F                | R D E           | RIN                           |                                                                          | N F O          |                                                                          | A T I O N                                                                      |
|-----------------------------------------|--------------------------|-----------------|-------------------------------|--------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| MODEL                                   | OPTICS                   |                 | LED MODE                      |                                                                          | VOLTAGE        | FINISH                                                                   | OPTIONS                                                                        |
| MODEL                                   | OPTICS                   |                 | LED MO                        | DE                                                                       | VOLTAGE        | FINISH                                                                   | OPTIONS                                                                        |
|                                         |                          | NO. LEDs        | DRIVE CURRENT                 | COLOR<br>TEMP - CCT                                                      |                | STANDARD<br>TEXTURED FINISH                                              |                                                                                |
| ☐ RZR-G                                 | TYPE II  PLED-II         | ☐ 120LED☐ 80LED | ☐ 350mA<br>☐ 525mA            | <ul> <li>NW (4000K)*</li> <li>*STANDARD</li> <li>□ CW (5000K)</li> </ul> | □ 120<br>□ 208 | BLACK RAL-9005-T                                                         | ☐ HIGH-LOW DIMMING FOR HARDWIRED SWITCHING OR NONINTEGRATED MOTION SENSOR      |
|                                         | PLED-II-FR               | D7D             | ☐ 700mA² ☐ 1050mA²            | WW (3000K)                                                               | ☐ 240<br>☐ 277 | RAL-9003-T  GREY RAL-7004-T                                              | ☐ INTERNAL<br>HOUSE SIDE SHIELD <b>HS-PLED</b>                                 |
| ☐ RZR-MAF <sup>1</sup>                  | PLED-II-ML               | RZR  80LED      |                               | FOR OTHER LED COLORS                                                     | ☐ 347<br>☐ 480 | DARK BRONZE                                                              | ☐ PHOTO CELL + VOLTAGE (EXAMPLE: PC120V) PC+V ☐ TWIST LOCK RECEPTACLE ONLY TPR |
|                                         | TYPE III WIDE PLED-III-W |                 |                               | AMBER³  ☐ PHOSPHOR                                                       |                | GREEN RAL-6005-T  FOR SMOOTH FINISH                                      | ☐ 7-PIN TWIST LOCK RECEPTACLE ONLY TPR7                                        |
| RZRM                                    | PLED-IV  TYPE IV         | ☐ RZRM<br>48LED |                               | CONVERTED<br>AMBER<br>PCA                                                |                | REPLACE SUFFIX "T" WITH SUFFIX "S" (EXAMPLE: RAL-9005-S) CONSULT FACTORY | ☐ SINGLE FUSE<br>(120V, 277V, 347V) <b>SF</b>                                  |
| NOTES:                                  | PLED-IV-FT               | ☐ 24LED         | NOTES:                        | TRUE AMBER <sup>4</sup> TRA                                              |                | FOR CUSTOM COLORS                                                        | ☐ DOUBLE FUSE<br>(208V, 240V, 480V) <b>DF</b>                                  |
| NOTES:<br>1 - DLC PENDING AS OF<br>7/17 | TYPE V NARROW PLED-VSQ-N |                 | 2 - 700mA and 1050mA<br>LED'S | NOT FOR USE WITH TRA<br>BERS HAVE NO DEFINABLE<br>A & 525mA DRIVE        |                |                                                                          | STEP DIM MOTION SENSOR (PROGRAMMED 50/100)                                     |
|                                         |                          |                 |                               |                                                                          |                |                                                                          |                                                                                |



# RAZAR SERIES-LED

# LED/ELECTRICAL GUIDE

| LED   | SOURCE<br>TYPE | SOURCE                                                 | INITIAL<br>LUMENS -<br>4000K CCT | INITIAL<br>LUMENS -<br>3000K CCT | INITIAL<br>LUMENS -<br>5000K CCT | L70 GREATER<br>THAN (HR) | STARTING<br>TEMP. | SYSTEM<br>WATTS | VOLTS      | MAX<br>INPUT AMPS |
|-------|----------------|--------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|-------------------|-----------------|------------|-------------------|
| 24    | LED            | 24 <b>PLED</b> <sup>®</sup> Optical<br>Module - 350mA  | 3,298 -<br>3,784                 | 3,133 -<br>3,595                 | 3,463 -<br>3,973                 | 60,000+                  | -20°F             | 29              | 120<br>277 | 0.24<br>0.10      |
| 24    | LED            | 24 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA  | 4,711 -<br>5,405                 | 4,475 -<br>5,135                 | 4,947 -<br>5,675                 | 60,000+                  | -20°F             | 42              | 120<br>277 | 0.34<br>0.15      |
| 24    | LED            | 24 <b>PLED</b> <sup>®</sup> Optical<br>Module - 700mA  | 6,023 -<br>6,911                 | 5,722 -<br>6,565                 | 6,324 -<br>7,256                 | 60,000+                  | -20°F             | 56              | 120<br>277 | 0.45<br>0.20      |
| 24    | LED            | 24 PLED® Optical<br>Module - 1050mA                    | 8,171 -<br>9,375                 | 7,762 -<br>8,906                 | 8,580 -<br>9,844                 | 60,000+                  | -20°F             | 82              | 120<br>277 | 0.68<br>0.30      |
| 40    | LED            | 40 PLED Optical<br>Module - 350mA                      | 5,585 -<br>6,408                 | 5,306 -<br>6,088                 | 5,864 -<br>6,729                 | 60,000+                  | -20°F             | 43              | 120<br>277 | 0.38<br>0.17      |
| 40    | LED            | 40 PLED® Optical<br>Module - 525mA                     | 8,059 -<br>9,246                 | 7,656 -<br>8,784                 | 8,462 -<br>9,709                 | 60,000+                  | -20°F             | 65              | 120<br>277 | 0.55<br>0.24      |
| 40    | LED            | 40 PLED® Optical<br>Module - 700mA                     | 10,240 -<br>11,749               | 9,728 -<br>11,162                | 10,752 -<br>12,337               | 60,000+                  | -20°F             | 87              | 120<br>277 | 0.73<br>0.32      |
| 40    | LED            | 40 <b>PLED</b> <sup>®</sup> Optical<br>Module - 1050mA | 13,642 -<br>15,652               | 12,960 -<br>14,870               | 14,324 -<br>16,435               | 60,000+                  | -20°F             | 128             | 120<br>277 | 1.12<br>0.49      |
| 48    | LED            | 48 <b>PLED</b> <sup>®</sup> Optical<br>Module - 350mA  | 6,562 -<br>7,529                 | 6,234 -<br>7,153                 | 6,890 -<br>7,909                 | 60,000+                  | -20°F             | 53              | 120<br>277 | 0.46<br>0.20      |
| 48    | LED            | 48 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA  | 9,330 -<br>10,705                | 8,864 -<br>10,170                | 9,797 -<br>11,240                | 60,000+                  | -20°F             | 79              | 120<br>277 | 0.68<br>0.29      |
| 48    | LED            | 48 <b>PLED</b> ® Optical<br>Module - 700mA             | 11,735 -<br>13,464               | 11,148 -<br>12,791               | 12,322 -<br>14,137               | 60,000+                  | -20°F             | 106             | 120<br>277 | 0.88<br>0.38      |
| 48    | LED            | 48 <b>PLED</b> ° Optical<br>Module - 1050mA            | 16,360 -<br>18,771               | 15,542 -<br>17,832               | 17,178 -<br>19,709               | 60,000+                  | -20°F             | 160             | 120<br>277 | 1.33<br>0.58      |
| RZR   |                |                                                        |                                  |                                  |                                  |                          |                   |                 |            |                   |
| 80    | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 350mA  | 10,824 -<br>12,419               | 10,283 -<br>11,798               | 11,365 -<br>13,040               | 60,000+                  | -20°F             | 86              | 120<br>277 | 0.75<br>0.33      |
| 80    | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA  | 15,587 -<br>17,884               | 14,808 -<br>16,990               | 16,366 -<br>18,778               | 60,000+                  | -20°F             | 130             | 120<br>277 | 1.10<br>0.48      |
| 80    | LED            | 80 <b>PLED</b> ° Optical<br>Module - 700mA             | 19,767 -<br>22,680               | 18,779 -<br>21,546               | 20,755 -<br>23,814               | 60,000+                  | -20°F             | 174             | 120<br>277 | 1.45<br>0.63      |
| 80    | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 1050mA | 26,255 -<br>30,124               | 24,942 -<br>28,618               | 27,568 -<br>31,630               | 60,000+                  | -20°F             | 257             | 120<br>277 | 2.22<br>0.96      |
| RZR-G |                |                                                        |                                  |                                  |                                  |                          |                   |                 |            |                   |
| 80    | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 350mA  | 10,950 -<br>12,564               | 10,403 -<br>11,936               | 11,498 -<br>13,192               | 60,000+                  | -20°F             | 87              | 120<br>277 | 0.75<br>0.33      |
| 80    | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA  | 15,735 -<br>18,054               | 14,948 -<br>17,151               | 16,522 -<br>18,957               | 60,000+                  | -20°F             | 129             | 120<br>277 | 1.10<br>0.48      |
| 80    | LED            | 80 <b>PLED</b> ° Optical<br>Module - 700mA             | 20,074 -<br>23,032               | 19,071 -<br>21,881               | 21,078 -<br>24,184               | 60,000+                  | -20°F             | 174             | 120<br>277 | 1.45<br>0.63      |
| 80    | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 1050mA | 27,651 -<br>31,725               | 26,268 -<br>30,139               | 29,033 -<br>33,311               | 60,000+                  | -20°F             | 266             | 120<br>277 | 2.22<br>0.96      |
| 120   | LED            | 120 <b>PLED</b> ° Optical<br>Module - 350mA            | 16,211 -<br>18,599               | 15,400 -<br>17,669               | 17,021 -<br>19,529               | 60,000+                  | -20°F             | 130             | 120<br>277 | 1.06<br>0.46      |
| 120   | LED            | 120 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA | 23,154 -<br>26,566               | 21996 -<br>25,238                | 24,312 -<br>27,894               | 60,000+                  | -20°F             | 192             | 120<br>277 | 1.63<br>0.70      |
| 120   | LED            | 120 <b>PLED</b> ° Optical<br>Module - 700mA            | 29,424 -<br>33,760               | 27,953 -<br>32,072               | 30,895 -<br>35,448               | 60,000+                  | -20°F             | 260             | 120<br>277 | 2.17<br>0.94      |
| 120   | LED            | 120 <b>PLED</b> ° Optical<br>Module - 1050mA           | 40,350 -<br>46,296               | 38,333 -<br>43,981               | 42,368 -<br>48,611               | 60,000+                  | -20°F             | 398             | 120<br>277 | 3.33<br>1.43      |

NOTES: 1. Max Input Amps is the highest of starting, operating, or open circuit currents.

WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.





<sup>2.</sup> Lumen values for LED Modules vary according to the distribution type. 80LED array appears in both the RZR and RZR-G models.

<sup>3.</sup> System Watts includes the source watts and all driver components.

<sup>4.</sup> Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use surge suppressor supplied with luminaire. Note: Surge suppressors are considered a perishable device.

<sup>5.</sup> L70(10K) - TM-21 6x rule applied.

# RAZAR-PT2 SERIES-PLED

### SPECIFICATIONS

### **OPTICAL HOUSING**

Heavy cast low copper aluminum (A356 alloy; <0.2% copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance  $<\pm$ .003") to facilitate thermal transfer of heat to housing and cooling fins. Minimum wall thickness is .188". All hardware is stainless steel.

### TWIN ARM POST TOP MOUNTING/ELECTRICAL COMPARTMENT

Two (2) 1/2" Sch.40 round aluminum arms are welded to a cast low copper aluminum (A356 alloy; <0.2% Cu) pole top tenon fitter which also serves as the LED Driver and wiring compartment. Tenon maximum 27/8" diameter x 31/2" height. All exposed hardware is stainless steel.

### **PLED™** OPTICS

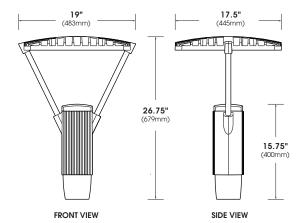
Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. LED optics completely seal each individual emitter to meet an IP66 rating. In asymmetric distributions, a micro-reflector inside the refractor re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H12 acrylic. Each LED refractor is sealed to the PCB over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. LED refractors produce standard site/area distributions. Panels are field replaceable and field rotatable in 90° increments.

### LED DRIVERS

Constant current electronic with a power factor of >.90 and a minimum operating temperature of -40°F/-40°C. Driver(s) is/are UL and cUL recognized and mounted directly against the Electrical Housing to facilitate thermal transfer, held down by universal clamps to facilitate easy removal. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of 120-277V, 50/60Hz or 347V-480V, 50,60Hz. (0 - 10V dimmable driver is standard. Driver has a minimum of 3KV internal surge protection. Luminaire supplied with 20KV surge protector for field accessible installation.)

### AMBER LED's

**PCA** (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS lamps and have a slight output in the blue spectral bandwidth. **TRA** (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.


### FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at 140°F. Four step sand blast and iron phosphate pretreatment for protection and paint adhesion. 400°F bake for maximum hardness and durability. Texture finish is standard.

### FIXTURE TYPE:



PATENT PENDING







2018358



### **PLED™** MODULES



# Approximate Average Lumens - 4000K (Lumens median of all distributions)

|    | 350mA |        |             |       | 525mA  |             | 700mA |        |         | 1050mA |        |             |
|----|-------|--------|-------------|-------|--------|-------------|-------|--------|---------|--------|--------|-------------|
|    | Watts | Lumens | HID Eq.     | Watts | Lumens | HID Eq.     | Watts | Lumens | HID Eq. | Watts  | Lumens | HID Eq.     |
| 40 | 45    | 5997   | 70-<br>100  | 66    | 8653   | 100-<br>150 | 87    | 10995  | 175     | 134    | 14647  | 200-<br>250 |
| 80 | 87    | 11622  | 175-<br>200 | 131   | 16736  | 200-<br>250 | 174   | 21235  | 400     | N/A    | N/A    | N/A         |

Spec/Order Example: RZR-PT2-LED/PLED-V-SQ/80LED-700mA/NW/277/RAL9005

| S         | P                            | R D      | E R I                                  | N G                          | I N F C        |                                                       | A T I O N                                     |
|-----------|------------------------------|----------|----------------------------------------|------------------------------|----------------|-------------------------------------------------------|-----------------------------------------------|
| MODEL     | OPTICS                       | R D      | LED MODE                               | 11                           | VOLTAGE        | ORM.<br>FINISH                                        | OPTIONS                                       |
| MODEL     | OPTIOS                       |          | LED MO                                 | DE                           | VOLTAGE        | FINIICI                                               | OPTIONS                                       |
| MODEL     | OPTICS                       |          | LED MO                                 | DE                           | VOLTAGE        | FINISH                                                | OPTIONS                                       |
|           |                              | NO. LEDs | DRIVE CURRENT                          | COLOR<br>TEMP - CCT          |                | STANDARD<br>TEXTURED FINISH                           |                                               |
| ☐ RZR-PT2 | TYPE II PLED-II              | □ 80LED  | ☐ 350mA                                | NW (4000K)* *STANDARD        | □ 120<br>□ 208 | BLACK RAL-9005-T                                      | HIGH-LOW DIMMING FOR HARDWIRED SWITCHING OR   |
|           | TYPE II FRONT ROW PLED-II-FR | ☐ 40LED  | ☐ 525mA<br>☐ 700mA¹                    | ☐ CW (5000K)                 | □ 240          | ☐ WHITE RAL-9003-T                                    | NONINTEGRATED MOTION<br>SENSOR                |
|           | TYPE II MEDIAN ILLUMINATOR   |          | 1050mA <sup>1</sup> (40LED ONLY)       | CONSULT FACTORY              | □ 277<br>□ 347 | GREY RAL-7004-T                                       | INTERNAL HOUSE SIDE SHIELD HS-PLED            |
|           | PLED-II-ML                   |          |                                        | FOR OTHER LED COLORS         | □ 480          | DARK BRONZE                                           | PHOTO CELL + VOLTAGE (EXAMPLE: PC120V) PC+V   |
|           | ☐ TYPE III                   |          |                                        | AMBER <sup>2</sup>           |                | GREEN RAL-6005-T                                      | ☐ TWIST LOCK RECEPTACLE ONLY TPR              |
|           | PLED-III-W                   |          |                                        | PHOSPHOR CONVERTED AMBER     |                | FOR SMOOTH FINISH REPLACE SUFFIX "T"                  | 7-PIN TWIST LOCK<br>RECEPTACLE ONLY TPR7      |
|           | PLED-IV                      |          |                                        | PCA  TRUE AMBER <sup>3</sup> |                | WITH SUFFIX "S" (EXAMPLE: RAL-9005-S) CONSULT FACTORY | ☐ SINGLE FUSE<br>(120V, 277V, 347V) <b>SF</b> |
|           | PLED-IV-FT                   |          | NOTES:                                 | TRA                          |                | FOR CUSTOM COLORS                                     | ☐ DOUBLE FUSE<br>(208V, 240V, 480V) <b>DF</b> |
|           | PLED-V-SQ-N                  |          |                                        | NOT FOR USE WITH TRA         |                |                                                       | STEP DIM MOTION SENSOR<br>(PROGRAMMED 50/100) |
|           | PLED-V-SQ-M                  |          | 3 - AVAILABLE IN 350n<br>CURRENTS ONLY | nA & 525mA DRIVE             |                |                                                       | ∴                                             |
|           | PLED-V-SQ-W                  |          |                                        |                              |                |                                                       | CONFIGURATOR MS-FC10                          |





| LED<br>COUNT | SOURCE<br>TYPE | SOURCE                                                 | INITIAL<br>LUMENS -<br>4000K CCT | INITIAL<br>LUMENS -<br>3000K CCT | INITIAL<br>LUMENS -<br>5000K CCT | L70 GREATER<br>THAN (HR) | STARTING<br>TEMP. | SYSTEM<br>WATTS | VOLTS      | MAX<br>INPUT AMPS |
|--------------|----------------|--------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|-------------------|-----------------|------------|-------------------|
| 40           | LED            | 40 <b>PLED</b> Optical<br>Module - 350mA               | 5,585 -<br>6,408                 | 5,306 -<br>6,088                 | 5,864 -<br>6,729                 | 60,000+                  | -20°F             | 45              | 120<br>277 | 0.38<br>0.17      |
| 40           | LED            | 40 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA  | 8,059 -<br>9,246                 | 7,656 -<br>8,784                 | 8,462 -<br>9,709                 | 60,000+                  | -20°F             | 66              | 120<br>277 | 0.55<br>0.24      |
| 40           | LED            | 40 PLED® Optical<br>Module - 700mA                     | 10,240 -<br>11,749               | 9,728 -<br>11,162                | 10,752 -<br>12,337               | 60,000+                  | -20°F             | 87              | 120<br>277 | 0.73<br>0.32      |
| 40           | LED            | 40 <b>PLED</b> <sup>®</sup> Optical<br>Module - 1050mA | 13,642 -<br>15,652               | 12,960 -<br>14,870               | 14,324 -<br>16,435               | 60,000+                  | -20°F             | 134             | 120<br>277 | 1.12<br>0.49      |
| 80           | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 350mA  | 10,824 -<br>12,419               | 10,283 -<br>11,798               | 11,365 -<br>13,040               | 60,000+                  | -20°F             | 87              | 120<br>277 | 0.75<br>0.33      |
| 80           | LED            | 80 <b>PLED</b> <sup>®</sup> Optical<br>Module - 525mA  | 15,587 -<br>17,884               | 14,808 -<br>16,990               | 16,366 -<br>18,778               | 60,000+                  | -20°F             | 131             | 120<br>277 | 1.10<br>0.48      |
| 80           | LED            | 80 <b>PLED</b> ° Optical<br>Module - 700mA             | 19,767 -<br>22,680               | 18,779 -<br>21,546               | 20,755 -<br>23,814               | 60,000+                  | -20°F             | 174             | 120<br>277 | 1.45<br>0.63      |

### NOTES:

- 1. Max Input Amps is the highest of starting, operating, or open circuit currents
- 2. Lumen values for LED Modules vary according to the distribution type
- 3. System Watts includes the source watts and all driver components.
- 4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use surge suppressor supplied with luminaire. Note: Surge suppressors are considered a perishable device.
- 5. L70(10K) TM-21 6x rule applied

WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.





# RAZAR WALLMOUNT-LED

### SPECIFICATIONS

### OPTICAL HOUSING

Heavy cast low copper aluminum (A356 alloy; <0.2% copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance  $<\pm$  .003") to facilitate thermal transfer of heat to housing and cooling fins. The Optical Housing bolts to the Electrical Housing forming a unified assembly. The minimum wall thickness is .188".

### **ELECTRICAL HOUSING**

Heavy cast low copper aluminum (A356 alloy; <0.2% copper) assembly. Minimum wall thickness is .188". Fixture Mounting Plate affixes to mounting surface over a recessed j-box. Electrical Housing anchors on the top edge of the Mounting Plate and stainless steel recessed socket head screws tighten the Electrical Housing to the Mounting Plate from the bottom.

### **PLED™** OPTICAL MODULES

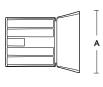
Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. LED optics completely seal each individual emitter to meet an IP66 rating. The asymmetric distributions, have a micro-reflector inside the refractor which re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H12 acrylic. Each LED refractor is sealed to the PCB over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. LED refractors produce Type II, III, and Type IV site/area distributions as well as other specialty asymmetric distributions. Panels are field replaceable and field rotatable in 90° increments.

### LED DRIVER(S)

Constant current electronic with a power factor of >.90 and a minimum operating temperature of -40°F/-40°C. Driver(s) is/are UL and cUL recognized and mounted directly against the Electrical Housing to facilitate thermal transfer, held down by universal clamps to facilitate easy removal. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of 120-277V, 50/60Hz or 347V-480V, 50,60Hz. (0 - 10V dimmable driver is standard. Driver has a minimum of 3KV internal surge protection. Luminaire supplied with 20KV surge protector for field accessible installation.)

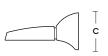
### LED EMITTERS

High output LED's are utilized with drive currents ranging from 350mA to 1050mA. 70CRI Minimum. LED's are available in standard Neutral White (4000K), or optional Cool White (5000K) or Warm White (3000K). Consult Factory for other LED options.


### AMBER LED's

**PCA** (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS lamps and have a slight output in the blue spectral bandwidth. **TRA** (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.

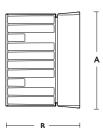
### **FINISH**


Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at 140°F. Four step media blast and iron phosphate pretreatment for protection and paint adhesion. 400°F bake for maximum hardness and durability.

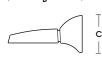
### PROJECT TYPE:



В



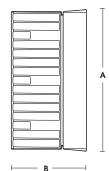




| FIXTURE  | Α               | В                     | С                    |
|----------|-----------------|-----------------------|----------------------|
| RZRW1    | 8.75"<br>(22mm) | <b>12"</b><br>(305mm) | <b>6"</b><br>(152mm) |
| RZRW1-EM | 11"<br>(279mm)  | <b>14"</b> (356mm)    | <b>6.5"</b> (165mm)  |

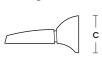
### RZR-WM1

PATENT PENDING









| FIXTURE  | Α                  | В                     | C                    |
|----------|--------------------|-----------------------|----------------------|
| RZRW2    | <b>16"</b> (406mm) | <b>12"</b><br>(305mm) | <b>6"</b><br>(152mm) |
| RZRW2-EM | <b>16"</b> (406mm) | <b>14"</b> (356mm)    | <b>6.5"</b> (165mm)  |

### RZR-WM2

PATENT PENDING







| FIXTURE  | Α                     | В                     | С                    |
|----------|-----------------------|-----------------------|----------------------|
| RZRW3    | <b>23"</b><br>(584mm) | <b>12"</b><br>(305mm) | <b>6"</b><br>(152mm) |
| RZRW3-EM | <b>23"</b><br>(584mm) | <b>14"</b><br>(356mm) | <b>6.5"</b> (165mm)  |

## RZR-WM3

PATENT PENDING



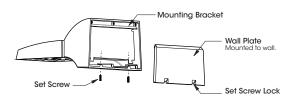




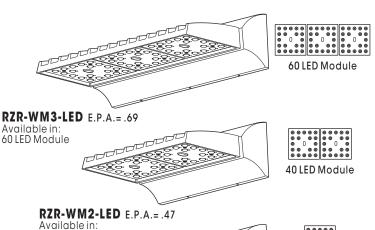


# RAZAR WALLMOUNT SERIES-LED

# EMERGENCY OPTION Emergency Back Box (EM) 3/4" Surface Conduit (SC) EMBack Box is 2" deeper than standard housing


THE EMERGENCY OPTION BACK BOX EXTENDS 2" BEYOND THE STANDARD HOUSING AND CONTAINS THE EMERGENCY COMPONENTS (EC) INCLUDING BATTERIES OR CAN BE USED FOR SURFACE CONDUIT (SC) APPLICATIONS. THERE IS TO BE AN SC1, SC2, AND SC3 OPTION FOR THE DIFFERING HOUSING SIZES. SC SHIPS WITH THREADED CONDUIT PLUGS.

THE EM-LED SYSTEM PROVIDES POWER TO ALL LEDS IN THE ARRAY (20, 40, or 60) TO MEET THE FOLLOWING LIGHT LEVELS FOR A MINIMUM OF 90 MINUTES -


WM1 = 45% @ 350MA WM2 = 36% @ 350MA WM3 = 24% @ 350MA

\*MULTIPLY THE % ABOVE BY THE LUMEN OUTPUT @ 350MA

### WALL MOUNTING



### **PLED® MODULES**



40 LED Module

20 LED Module

**RZR-WM1-LED** E.P.A.=.33 Available in: 20LED Module

### MAX INPUT WATTAGE

| # OF  |       | DRIVE CURRENT |       |        |  |  |  |  |  |
|-------|-------|---------------|-------|--------|--|--|--|--|--|
| LED's | 350mA | 525mA         | 700mA | 1050mA |  |  |  |  |  |
| 60    | 68W   | 99W           | 131W  | 198W   |  |  |  |  |  |
| 40    | 45W   | 66W           | 87W   | 134W   |  |  |  |  |  |
| 20    | 23W   | 33W           | 44W   | 66W    |  |  |  |  |  |

Spec/Order Example: RZR-WM2/PLED-IV/40LED-700mA/CW/277/RAL-8019-S/SF

| S F           | PEC/O                    | R D                      | E R I                                                                         | N G                                  | INFC                    | D R M                                                          | ATION                                                                   |
|---------------|--------------------------|--------------------------|-------------------------------------------------------------------------------|--------------------------------------|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|
| MODEL         | OPTICS                   |                          | LED MODE                                                                      |                                      | VOLTAGE                 | FINISH                                                         | OPTIONS                                                                 |
| MODEL         | OPTICS                   |                          | LED MO                                                                        | DE                                   | VOLTAGE                 | FINISH                                                         | OPTIONS                                                                 |
|               | PLED® DISTRIBUTION TYPE  | NO. LEDs  RZR-WM1  20LED | DRIVE CURRENT                                                                 | COLOR<br>TEMP - CCT                  |                         | STANDARD<br>TEXTURED FINISH                                    | ☐ HIGH-LOW DIMMING FOR EXTERNAL CONTROL HLSW ☐ HOUSE SIDE SHIELDING     |
| □ RZR-WM1     | TYPE II  PLED-II         | ZOLED                    | ☐ 350mA<br>☐ 525mA                                                            | □ NW (4000K)* *STANDARD □ CW (5000K) | ☐ 120<br>☐ 208<br>☐ 240 | BLACK RAL-9005-T  WHITE                                        |                                                                         |
| <br>☐ RZR-WM2 | PLED-II-FR               | RZR-WM2                  | ☐ 700mA <sup>1</sup> ☐ 1050mA <sup>1</sup>                                    | CONSULT FACTORY                      | □ 277<br>□ 347          | RAL-9003-T  GREY RAL-7004-T                                    | ☐ SINGLE FUSE (120V & 277V) SF ☐ DOUBLE FUSE (208V & 240V) DF           |
|               | TYPE III WIDE PLED-III-W |                          |                                                                               | AMBER <sup>2</sup>                   | □ 480                   | DARK BRONZE RAL-8019-T                                         | STEP DIM MOTION SENSOR (PROGRAMMED 50/100)                              |
| ☐ RZR-WM3     | TYPE IV PLED-IV          | RZR-WM3                  |                                                                               | PHOSPHOR CONVERTED AMBER PCA         |                         | GREEN RAL-6005-T  FOR SMOOTH FINISH                            | ☐ REMOTE MOTION SENSOR CONFIGURATOR                                     |
|               | TYPE IV-FT PLED-IV-FT    |                          |                                                                               | TRUE AMBER <sup>3</sup> TRA          |                         | REPLACE SUFFIX "T"<br>WITH SUFFIX "S"<br>(EXAMPLE: RAL-9005-S) | ☐ EMERGENCY BACKUP 1<br>(HOUSING ONLY) EMH1<br>☐ EMERGENCY BACKUP 2 EM2 |
|               |                          |                          | NOTES:<br>1 - 700mA and 1050m/<br>LED'S                                       | A NOT FOR USE WITH TRA               |                         |                                                                | ☐ EMERGENCY BACKUP 3EM3                                                 |
|               |                          |                          | 2 - NARROW BAND AI<br>CCT EQUIVALENT<br>3 - AVAILABLE IN 350<br>CURRENTS ONLY |                                      |                         | CONSULT FACTORY<br>FOR CUSTOM COLORS                           | SURFACE CONDUIT 1 SC1 SURFACE CONDUIT 2 SC2 SURFACE CONDUIT 3 SC3       |



| LED<br>COUNT | SOURCE<br>TYPE | SOURCE                                                | INITIAL<br>LUMENS -<br>4000K | INITIAL<br>LUMENS -<br>3000K | INITIAL<br>LUMENS -<br>5000K | L70 GREATER<br>THAN (HR)-TM21 | STARTING<br>TEMP. | SYSTEM<br>WATTS | VOLTS             | MAX<br>INPUT AMPS    |
|--------------|----------------|-------------------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------|-----------------|-------------------|----------------------|
| 20           | LED            | 20 <b>PLED</b> <sup>®</sup> Optical<br>Module - 350mA | 2,706 -<br>2,993             | 2,571 -<br>2,843             | 2,841 -<br>3,143             | 60,000+                       | -20°F             | 22              | 120<br>277<br>347 | 0.19<br>0.08<br>0.07 |
| 20           | LED            | 20 <b>PLED</b> ° Optical<br>Module - 525mA            | 3,897 -<br>4,310             | 3,702 -<br>4,095             | 4,092 -<br>4,526             | 60,000+                       | -20°F             | 33              | 120<br>277<br>347 | 0.28<br>0.12<br>0.10 |
| 20           | LED            | 20 <b>PLED</b> ° Optical<br>Module - 700mA            | 4,942 -<br>5,466             | 4,695 -<br>5,193             | 5,189 -<br>5,739             | 60,000+                       | -20°F             | 44              | 120<br>277<br>347 | 0.37<br>0.16<br>0.13 |
| 20           | LED            | 20 <b>PLED</b> ° Optical<br>Module - 1050mA           | 6,564 -<br>7,260             | 6,236 -<br>6,897             | 6,892 -<br>7,623             | 60,000+                       | -20°F             | 65              | 120<br>277<br>347 | 0.55<br>0.24<br>0.19 |
| 40           | LED            | 40 <b>PLED</b> Optical<br>Module - 350mA              | 5,585 -<br>6,178             | 5,206 -<br>5,869             | 5,864 -<br>6,487             | 60,000+                       | -20°F             | 43              | 120<br>277<br>347 | 0.36<br>0.16<br>0.13 |
| 40           | LED            | 40 PLED° Optical<br>Module - 525mA                    | 8,059 -<br>8,914             | 7,656 -<br>8,468             | 8,462 -<br>9,360             | 60,000+                       | -20°F             | 65              | 120<br>277<br>347 | 0.55<br>0.24<br>0.19 |
| 40           | LED            | 40 PLED® Optical<br>Module - 700mA                    | 10,240 -<br>11,327           | 9,728 -<br>10,761            | 10,752 -<br>11,893           | 60,000+                       | -20°F             | 87              | 120<br>277<br>347 | 0.73<br>0.32<br>0.26 |
| 40           | LED            | 40 PLED° Optical<br>Module - 1050mA                   | 13,642 -<br>15,089           | 12,690 -<br>14,335           | 14,324 -<br>15,843           | 60,000+                       | -20°F             | 129             | 120<br>277<br>347 | 1.08<br>0.47<br>0.38 |
| 60           | LED            | 60 PLED° Optical<br>Module - 350mA                    | 8,118 -<br>8,979             | 7,712 -<br>8,530             | 8,524 -<br>9,428             | 60,000+                       | -20°F             | 65              | 120<br>277<br>347 | 0.55<br>0.24<br>0.19 |
| 60           | LED            | 60 PLED° Optical<br>Module - 525mA                    | 11,690 -<br>12,930           | 11,106 -<br>12,284           | 12,275 -<br>13,577           | 60,000+                       | -20°F             | 98              | 120<br>277<br>347 | 0.82<br>0.36<br>0.29 |
| 60           | LED            | 60 PLED® Optical<br>Module - 700mA                    | 14,825 -<br>16,398           | 14,084 -<br>15,578           | 15,566 -<br>17,218           | 60,000+                       | -20°F             | 131             | 120<br>277<br>347 | 1.09<br>0.47<br>0.38 |
| 60           | LED            | 60 PLED° Optical<br>Module - 1050mA                   | 19,691 -<br>21,780           | 18,706 -<br>20,691           | 20,676 -<br>22,869           | 60,000+                       | -20°F             | 193             | 120<br>277<br>347 | 1.61<br>0.70<br>0.56 |
|              |                |                                                       |                              |                              |                              |                               |                   |                 |                   |                      |

### NOTES:

- 1. Max Input Amps is the highest of starting, operating, or open circuit currents
- ${\bf 2}.$  Lumen values for LED Modules vary according to the distribution type
- ${\bf 3.}$  System Watts includes the source watts and all driver components.
- 4. Fuse value should be sufficient to protect all wiring components.
- 5. L70(10K) TM-21 6x rule applied

L70(10K) - Calculated = 244,000 @ 700mA = 102,000@ 1050mA

WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.







www.birchwoodlighting.com

# **VANESSA LED**

Wet Location Luminaire
Distributed Array LED

Ceiling Mount | Wall Mount | CSS



VANESSA combines high-end architectural styling with precision engineering to create a strong, elegant wet-location luminaire designed to complement wet exterior or interior installations.

Weather-sealing prevents water and moisture from entering the lens, power entry points and end-caps. Constructed of heavy gauge extruded aluminum, precision machined smooth end-caps and extruded acrylic lenses, VANESSA is built to last while withstanding elements associated with wet-location applications.

VANESSA is available as LED and single or double T5 or T8, or single T5HO linear fluorescent lamps. 2', 3', 4', 6' and 8' nominal lengths are standard, continuous runs are available.







Made in the USA

### FIXTURE SPECIFICATIONS

### Construction

Heavy gauge square extruded aluminum housing. Precision-machined aluminum endcaps. Extruded acrylic lenses. Stainless steel hardware. Concealed weather-seal gaskets at end caps, lens and power entry on all stand-alone or continuous run fixtures with an IP65 rating. Feed points accept ½" trade size threaded wet location conduit fittings.

### **Mounting Options**

(CSS) Cable Suspension System field adjustable  $\frac{1}{16}$  aircraft cable, (WM) Wall Mount, (REC) Recessed or (CM) Ceiling Mount.

### **Finishes**

(SL) Silver Matte Texture, (MW) Matte White, or (FB) Flat Black. Other powder coat finishes available. Consult factory for details.

### LED Light Engine System

LED Light Engines are available as HLO (High Lumen Output) and SLO (Standard Lumen Output) providing efficient illumination. CLO (Custom Lumen Output) allows for end user specified lumen output or tailored wattage consumption for certain models. Consult factory for details.

### Dimming

Dimming is available with a variety of control protocols and options. Consult factory for availability and specifications.

### **Acrylic Lens Options**

(FW) Frosted White impact resistant extruded lens.

### **Fixture Length**

Fixtures are available in 2', 3', 4', 6' and 8' nominal lengths. Continuous run mounting available featuring water-sealed gaskets within knock-outs for maintaining WL rating. See installation section for more details.

### **Custom and Mods**

We proudly specialize in manufacturing custom and modified luminaires and have the ability to modify most of our standard fixtures. Please contact factory with any inquiries.

V-0217



**VANESSA LED** 

Wet Location Luminaire
Distributed Array LED

www.birchwoodlighting.com

Type: Job Name:

Ceiling Mount | Wall Mount | CSS

### SPECIFICATION CODE

model

light engine

ngine color temp

length distrib

distribution mounting

feed finish

lens

Itage driv

standard standard cable cord color length

CSS selections only<sup>3</sup>

option

option

|                 |                                                                                                                  |                   |                                                                                                       |                |                                                                                  |                                                                                                                                               |                                                     |                                     |                          |                                |                                                                               | _                |                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|--------------------------|--------------------------------|-------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------|
| Model           | Light<br>Engine                                                                                                  | Color<br>Temp     | Nominal<br>Length                                                                                     | Distribution   | Mounting                                                                         | Feed                                                                                                                                          | Finish                                              |                                     | Lens                     | Voltage                        | Driver                                                                        | Optio            | ons                                                                              |
| VAN-<br>LED-400 | SLO -<br>Standard<br>Lumen Output<br>HLO -<br>High<br>Lumen Output<br>CLO <sup>4</sup><br>Custom<br>Lumen Output | <b>40</b> - 4000K | 2 - 2'<br>3 - 3'<br>4 - 4'<br>6 - 6' <sup>6</sup><br>8 - 8' <sup>6</sup><br>CR_1<br>Continuous<br>Run | DR -<br>Direct | CSS -<br>Cable<br>Suspended<br>WM -<br>Wall<br>Mount<br>CM -<br>Ceiling<br>Mount | STND - Standard EFL <sup>5</sup> - End Feed Left EFR <sup>5</sup> - End Feed Right EF2 <sup>5</sup> - End Feed (both ends) JBE <sup>5</sup> - | MW - M<br>W<br>FB - FI<br>B<br>CUP <sup>2</sup> - C | ilver Matte Eexture Matte Vhite Hat | FW -<br>Frosted<br>White | 120<br>277<br>347 <sup>4</sup> | EB -<br>Electronic<br>(standard)<br>Dimming<br>D1 - 1% (nom<br>0-10V<br>0-10V | CSS <sup>3</sup> | - Cable Length - Power Cord Color  Emergency Inverter - High Ambient Temperature |
|                 |                                                                                                                  |                   |                                                                                                       |                | REC -                                                                            | J-box exten                                                                                                                                   | der                                                 |                                     |                          |                                |                                                                               |                  | remperature                                                                      |

Recessed

### **CSS Options**

Cable Length

Power Cord Color

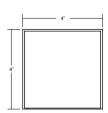
36 - 36" (standard)

W - White

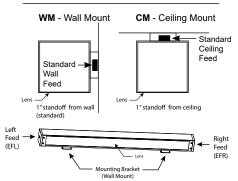
**12 -** 72 **120 -** 120" G - Gray (standard)

### **NOTES**

- 1 specify length in nominal feet
- 2 contact factory for custom finish
- 3 see options for non-standard selections
- 4 available for EB. D1. D10 drivers only
- 5 EM's are remote mounted along with the test switch in a dry location, consult factory for more info
- 6 6' & 8' lengths are made up with (2) 3' fixtures or (2) 4' fixtures respectively


VANESSA is rated for operation with ambient temperatures not to exceed 40°C.

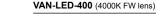
Use specification code "HAT" for applications where ambient will be between 40° and 45°C. The "HAT" option is a thermistor which will control internal temperatures so as not to exceed internal device maximum temperature. At certain


temperature thresholds, fixture will dim light output to keep internal temperatures within the acceptable range. Available for EB, D1 and D10 drivers only,

7 direct (DR) distribution only

Dimensions




Mounting

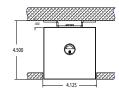


\*see option sheet for details

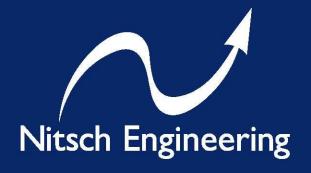
consult factory for more details.






SLO - 89.4 lm/watt delivered @ 4.4 w/ft consumed watts, 393 lm/ft.

HLO - 84 lm/watt delivered @ 9 w/ft consumed watts, 756 lm/ft.


CLO - refer to CLO Calculator

LED supplement info

CSS - Cable Suspension System
Standard Top Feed
Cord Grip/
SO Cord **REC** - Recessed



V-0217



# Transportation Impact Report

W. Edward Balmer Elementary School Northbridge, MA

January 26, 2018

Prepared for:

Dore & Whittier Architects, Inc. 260 Merrimac Street, Bldg. 7 Newburyport, MA 01950

Submitted by:

Nitsch Engineering 2 Center Plaza, Suite 430 Boston, MA 02108

Nitsch Project #12260.

### **TABLE OF CONTENTS**

| 1 | INT  | RODUCTION                                                                       | 3  |
|---|------|---------------------------------------------------------------------------------|----|
| 2 | EXIS | STING CONDITIONS                                                                | 6  |
|   | 2.1  | Study Area Roadways                                                             | 6  |
|   | 2.2  | Study Area Intersections                                                        |    |
|   | 2.3  | Balmer Elementary School Site Visit                                             |    |
|   | 2.4  | Balmer Elementary School Site Access and Egress                                 |    |
|   | 2.5  | Balmer Elementary School Traffic Circulation and Pick-up/Drop-off               |    |
|   | 2.6  | Balmer Elementary School Parking Supply and Demand                              | 14 |
| 3 | SAF  | ETY ANALYSIS                                                                    | 16 |
|   | 3.1  | Crash Data                                                                      | 16 |
| 4 | EXIS | STING TRAFFIC CONDITIONS                                                        | 17 |
|   | 4.1  | 2017 Traffic Count Data                                                         | 17 |
|   | 4.2  | Seasonal Adjustment                                                             |    |
| 5 | FUT  | URE NO-BUILD TRAFFIC CONDITIONS                                                 | 20 |
|   | 5.1  | Background Growth                                                               | 20 |
|   | 5.2  | Planned Development                                                             | 20 |
|   | 5.3  | No-Build Traffic Volumes                                                        | 20 |
| 6 | FUT  | URE CONDITIONS                                                                  | 22 |
|   | 6.1  | Proposed School Access and Egress, Circulation, Bus and Parent Pick-Up/Drop-Off | 22 |
|   | 6.2  | Trip Generation for New School with 510 Student Enrollment Option (Option A)    | 22 |
|   | 6.3  | Trip Generation for New School with 1110 Student Enrollment Option (Option B)   | 27 |
| 7 | OPE  | RATIONS ANALYSIS                                                                | 31 |
|   | 7.1  | Level of Service Criteria                                                       | 31 |
|   | 7.2  | Capacity Analysis                                                               |    |
|   | 7.3  | 2017 Existing Capacity Analysis                                                 |    |
|   | 7.4  | 2024 No-Build Capacity Analysis                                                 |    |
|   | 7.5  | Traffic Signal Warrant                                                          |    |
|   | 7.6  | Sight Distance                                                                  |    |
|   | 7.7  | 2024 Build Capacity Analysis - Option A                                         |    |
|   | 7.8  | 2024 Build Capacity Analysis - Option B                                         |    |
|   | 7.9  | Parking                                                                         | 39 |
| 8 | CON  | ICLUSIONS AND RECOMMENDATIONS                                                   | 40 |
|   | 8.1  | Conclusions                                                                     |    |
|   | 8.2  | Recommendations                                                                 | 41 |

### **LIST OF TABLES**

| Table 2 - Crash Summary                                              |                      |
|----------------------------------------------------------------------|----------------------|
| Table 3 - Automatic Traffic Recorder (ATR) Summary                   |                      |
| Table 4 - Vehicle Travel Speeds                                      |                      |
| Table 5 - Proposed Trip Generation - Option A                        | 23                   |
| Table 6 - Proposed Trip Generation - Option B                        | 27                   |
| Table 7 - Level of Service Criteria                                  | 31                   |
| Table 8 - Level of Service Summary – 2017 Existing Conditions        | 32                   |
| Table 9 - Level of Service Summary - 2024 No - Build Conditions      | 33                   |
| Table 10 - Sight Distance Criteria                                   | 35                   |
| Table 11 - Proposed Sight Distance Evaluation                        | 36                   |
| Table 12 - Level of Service Summary – 2024 Build Option A Conditions |                      |
| Table 13 - Level of Service Summary – 2024 Build Option B Conditions |                      |
| Table 14 - Proposed Parking Summary                                  | 39                   |
|                                                                      |                      |
| LIST OF FIGURES                                                      |                      |
| Figure 1: Locus Map                                                  |                      |
|                                                                      |                      |
| Figure 1: Locus Map                                                  | 5                    |
| Figure 1: Locus Map                                                  | 5<br>                |
| Figure 1: Locus Map                                                  |                      |
| Figure 1: Locus Map                                                  | 24<br>25<br>26<br>28 |

### 1 INTRODUCTION

Nitsch Engineering has been retained by Dore & Whittier Architects to prepare a qualitative assessment of safety, traffic circulation, and traffic access/egress, associated with the feasibility study and schematic design for the proposed W. Edward Balmer (Balmer) Elementary School reconstruction project located in Northbridge, Massachusetts.

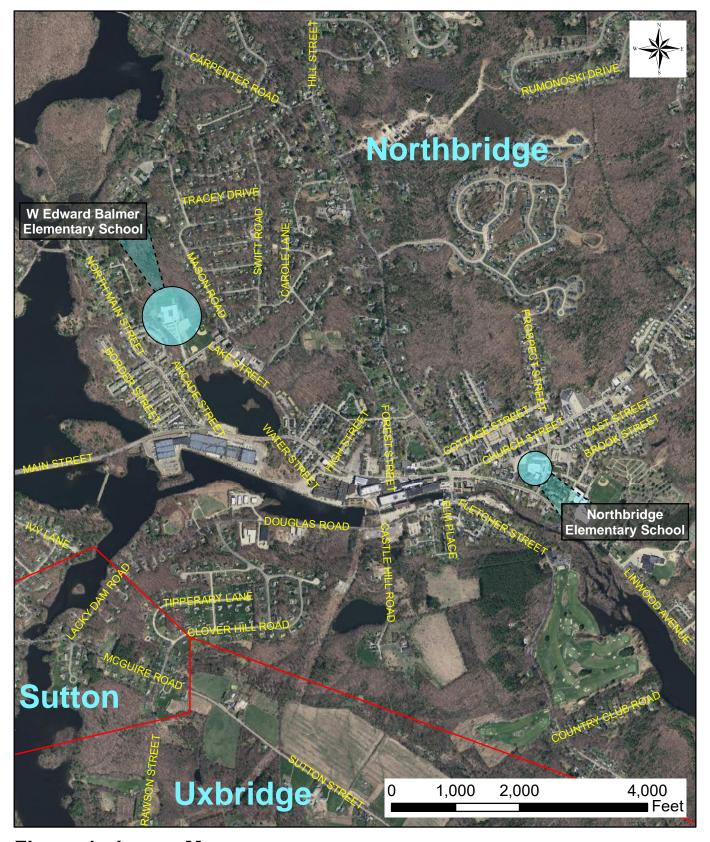
The Project includes construction of a new Balmer Elementary School building and grounds on the site of the existing school, located at 21 Crescent St in Northbridge. The existing Balmer School is an elementary educational institution with an enrollment of 569 students in second through fourth grades, and approximately 49 staff.

The following four (4) potential options are being considered:

- 1. Option B2, Grades 2-4, New Construction at the Rear of the Site (510 enrollment and approximately 49 staff)
- 2. Option C2, Addition/Renovation of the existing Balmer School, keeping the Academic Wing (1,030 enrollment K-5, plus 80 PK, 1,110 total and approximately 80staff)
- 3. Option C3, Grades PK-5, New Construction at the Rear of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total and approximately 80 staff)
- 4. Option C5, Grades PK-5, New Construction, Front of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total and approximately 80 staff)

The evaluation will be based on the two (2) enrollment options of A with 510 and B with 1,110 students, because all four (4) options have identical access and egress points. In Option A, the existing school will be replaced in kind with a new school. In Option B., the new larger school will combine Balmer and Northbridge Elementary Schools.

The report describes the project area, presents traffic counts (taken in 2017), and evaluates the existing facilities and the site improvements to support the development alternatives by analyzing existing and future traffic operating efficiency. The data is used to determine the traffic circulations, overall operations, and to evaluate the traffic impacts of the proposed school.


The standards used for analysis conform to the 2009 edition of the *Manual on Uniform Traffic Control Devices*<sup>1</sup> (MUTCD), 2009 edition and the 2010 edition of the Highway Capacity Manual.

The following conditions are analyzed in this report:

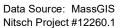

- Existing Conditions 2017;
- Future 2024 No-Build;
- Future 2024 Build based on enrollment option of 510 students; and
- Future 2024 Build based on enrollment option of 1,110 students.

Figure 1 is the Locus Map showing the proximity of the new school and the surrounding roadway network. Figure 2 shows the existing conditions of the school site.

<sup>&</sup>lt;sup>1</sup> Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition, Federal Highway Administration



**Figure 1: Locus Map**W. Edward Balmer and Northbridge Elementary School Northbridge, Massachusetts







**Figure 2: Existing Conditions**W. Edward Balmer Elementary School Northbridge, Massachusetts



Data Source: MassGIS Nitsch Project #12260.1

### 2 EXISTING CONDITIONS

### 2.1 Study Area Roadways

To examine the existing conditions, we studied and collected data at the following roadways:

- 1. Main Street.
- 2. North Main Street,
- 3. Crescent Street, and
- 4. Lake Street,

### Main Street

Main Street is classified by the Massachusetts Department of Transportation (MassDOT) as a Rural Major Collector and runs in the east-west directions between the Worcester-Providence Turnpike (Route 146) in Northbridge and Hill St in Northbridge. The posted speed limits along the roadway in the study area are 30 miles per hour. The land use is primarily commercial within the study area. The roadway is within the jurisdiction of the Town of Northbridge.

### North Main Street

North Main Street is classified by MassDOT as a Rural Major Collector and runs in the southeast-northwest directions between Goldthwaite Road and Main Street in Northbridge. The posted speed limits along the roadway in the study area are 25 miles per hour. The land use is primarily residential. The roadway is within the jurisdiction of the Town of Northbridge.

### Crescent Street

Crescent Street is classified by MassDOT as a local roadway and runs in the northeast-southwest directions between Mason Road and North Main Street in Northbridge. The roadway within the study area is designated as School Zone, with 20 miles per hour posted speed limits. The land use is primarily residential. The roadway is within the jurisdiction of the Town of Northbridge.

### Lake Street

Lake Street is classified by MassDOT as a local roadway and runs in the north-south directions between Crescent Street and Main Street in Northbridge. The roadway within the study area does not have a posted speed limit. The roadway is within the jurisdiction of the Town of Northbridge.

### 2.2 Study Area Intersections

To examine the existing conditions, we included the following intersections in the study area. The intersection locations are shown in Figure 3.

- Main Street at Lake Street
- 2. Main Street at North Main Street

- 3. North Main Street at Crescent Street,
- 4. Crescent Street at Arcade Street,
- 5. Crescent Street at Balmer Elementary School Driveway, and
- Crescent Street at Lake Street.

### Main Street at Lake Street

Main Street intersects Lake Street at a three-way unsignalized intersection with Main Street approaching from the east and west and Lake Street approaching from the north. Main Street operates freely with no control. Lake Street operates with stop control.

From both approaches Main Street is a two-way roadway with one travel lane in each direction separated with double yellow centerlines, and is approximately 30 feet wide. Approaching from the north Lake Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Continuous concrete sidewalks are present on both sides of each approach. A crosswalk is present across Main Street.

### Main Street at North Main Street

Main Street and North Main Street intersect as a three-way unsignalized intersection, with Main Street approaching from the west and east and North Main Street approaching from northwest. Main Street operates freely with no control. North Main Street operates with stop control.

From both approaches, Main Street is a two-way roadway with one lane in each direction, separated by double yellow centerline and is approximately 40 feet wide. Approaching from northwest, North Main Street is a two-lane roadway separated with a double yellow center line. At the intersection, North Main Street is separated with a raised concrete median, and is approximately 72 feet wide. Cement concrete sidewalks are present along both sides of Main Street and North Main Street on the approach to the intersection. Crosswalks are present across North Main Street.

### North Main Street at Crescent Street

North Main Street, Crescent Street and C Street intersect at a four-way unsignalized intersection, with North Main Street approaching from southeast and northwest, Crescent Street approaching from the northeast, and C Street approaching from the southwest. Crescent Street and C Street operate with stop control. North Main Street operates freely with no control.

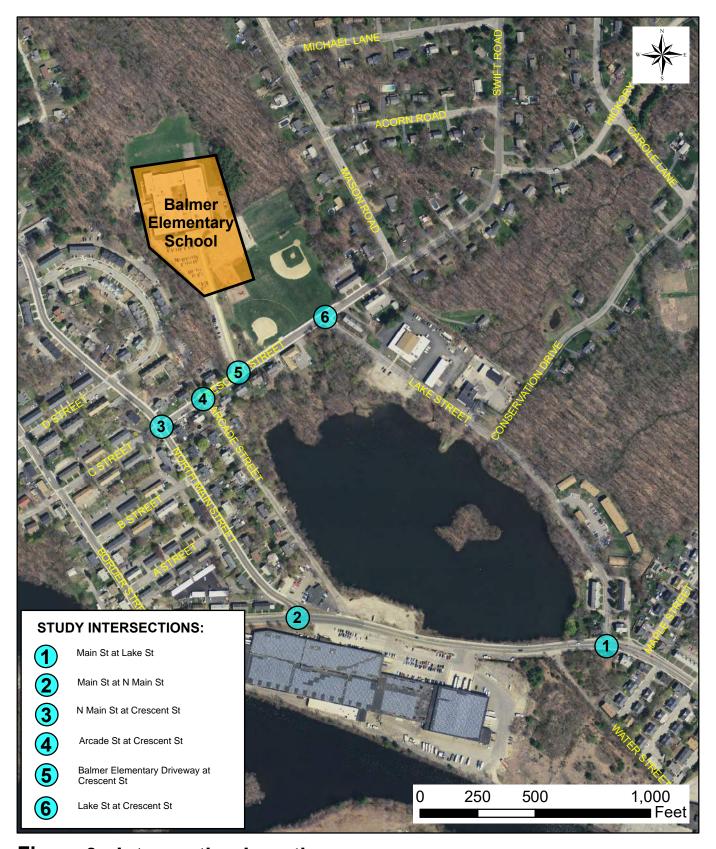
From both approaches North Main Street is a two-way roadway with one lane in each direction, separated by double yellow centerline. Approaching the intersection, the North Main Street is approximately 27 feet wide. Approaching the intersection Crescent Street and C Street are two-way roadways with one lane in each direction without separation and approximately 25 feet wide at the intersection. Cement concrete sidewalk and crosswalks are present on all sides of the intersection. Crosswalks are present across all approaches.

### Crescent Street at Arcade Street

Crescent Street intersects Arcade Street at a three-way unsignalized intersection with Crescent Street approaching from the northeast and southwest and Arcade Street approaching from the southeast. Crescent Street operates freely with no control. Arcade Street operates with stop control.

From both approaches, Crescent Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Approaching from southeast, Arcade Street is approximately 25 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Continuous cement concrete sidewalks are present on both sides of Crescent Street. Continuous bituminous concrete sidewalks are present on both sides of Arcade Street. A Crosswalk is present across Arcade Street approach.

### Crescent Street at Balmer Elementary School Driveway


Crescent Street intersects the Balmer Elementary School Driveway at a three-way unsignalized intersection with Crescent Street approaching from the northeast and southwest and the driveway approaching from the northwest. Crescent Street operates freely with no control. The Balmer Elementary School Driveway operates with stop control.

From both approaches, Crescent Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Approaching from northwest, The Balmer Elementary School Driveway is approximately 30 feet wide. and contains one travel lane in each direction. There are no pavement markings separating the lanes. Continuous cement concrete sidewalks are present on both sides of Crescent Street. A continuous bituminous concrete sidewalk is present on easterly side of the driveway. Crosswalks are present across the Balmer Elementary School Driveway and the southwest Crescent Street approach leg.

### Crescent Street at Lake Street

Crescent Street intersects Lake Street at a three-way unsignalized intersection with Crescent Street approaching from the northeast and southwest and Lake Street approaching from the southeast. Crescent Street operates freely with no control. Lake Street operates with stop control.

From both approaches Crescent Street is approximately 30 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Lake Street is approximately 26 feet wide and contains one travel lane in each direction. There are no pavement markings separating the lanes. Cement concrete sidewalk is present on both sides of Crescent Street and the east side of Lake Street. Crosswalks are present across the Lake Street.



**Figure 3: Intersection Locations** W. Edward Balmer Elementary School Northbridge, Massachusetts



### 2.3 Balmer Elementary School Site Visit

Nitsch Engineering conducted two site visits (Tuesday September 12, and Wednesday September 13, 2017) to observe the site circulation associated with the weekday morning drop-off, weekday afternoon pick-up and general queue lengths around both Balmer Elementary and Northbridge Elementary School sites. The weekday morning drop-off observation occurred during clear conditions with a temperature of approximately 72 degrees. The weekday afternoon pick-up activity occurred during clear conditions with a temperature of approximately 82 degrees.

### 2.4 Balmer Elementary School Site Access and Egress

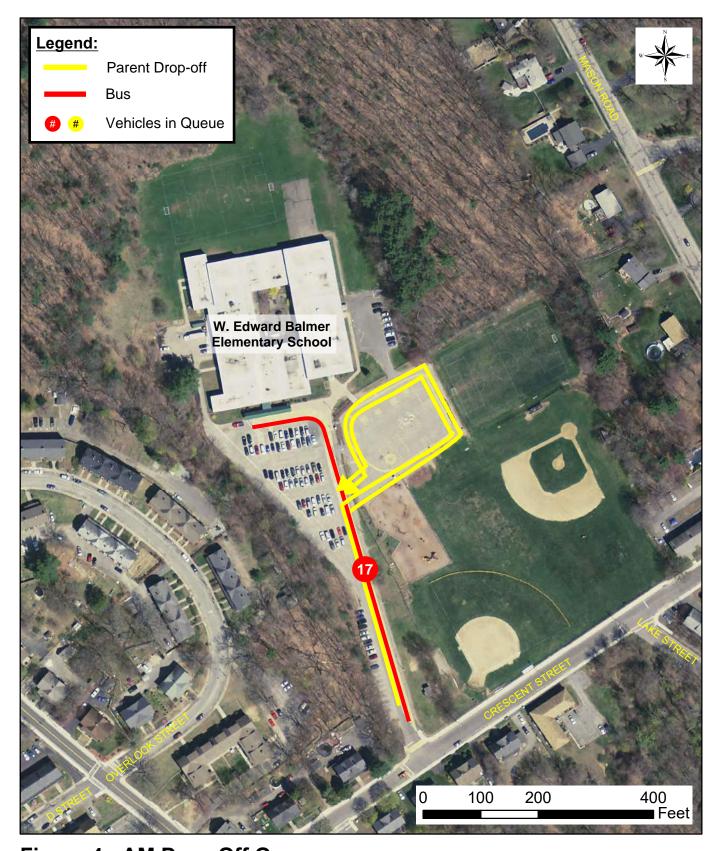
Balmer Elementary School is located at 21 Crescent St, North of Main Street, in Northbridge. The School is accessed from Crescent Street. The access and egress to the school (parental drop-off and pick-up, as well as the teachers and staff) occurs from Crescent Street through the school driveway to the parking lot. The school driveway is approximately 590 feet long and 40 feet wide. An 8-foot wide sidewalk is present at the easterly side of the driveway, which connects the sidewalk along Crescent Street to Balmer Elementary School.

### 2.5 Balmer Elementary School Traffic Circulation and Pick-up/Drop-off

Figures 4 and 5 graphically depicts the queuing activity during the weekday morning drop-off and afternoon pick-up periods at the existing Balmer Elementary School.

### **Existing Morning Drop-off Circulation:**

Parents arrive at the school through Crescent Street from 7:45 AM through 8:30 AM, and enter the two drop off lines at the fenced in play lot. The children are greeted by a couple of the teachers who assist them when exiting the cars. Some parents also park at the school lot and walk their children to the school entrance. A total of 112 vehicles entered the school parking lot, of which 74 parental drop-offs were observed during morning. A total of 17 buses and one mini-bus/Special Ed bus drop off students at the school. At the time of observation, we did not notice any bus and vehicular traffic conflict occurring. 71 vehicles entering the site were traveling southwest-bound on Crescent Street while 41 vehicles were traveling eastbound. 41 vehicles exiting the site were observed traveling eastbound on Crescent Street while 33 vehicles were observed traveling westbound.


### Existing Afternoon Pick-up Circulation:

The afternoon pick-up period occurs approximately from 1:45 PM to 2:45 PM. Parents start arriving from Crescent Street around 1:45 PM, and park at the fenced in play lot, southeast of the school, and wait for their children. We observed 63 vehicles parked at this lot. At the time of observation, we did not notice any parental vehicle parking extend out of the fenced area. All the parents walk to the school to collect their children at the Parent Pickup door. Once they have collected their children they leave via Crescent Street, and normal traffic returns around 2:45 PM. 45 vehicles entering the site were traveling westbound on Crescent Street while 18 vehicles were traveling eastbound. 42 vehicles exiting the site were observed traveling eastbound on Crescent Street while 44 vehicles were observed traveling westbound.

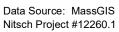
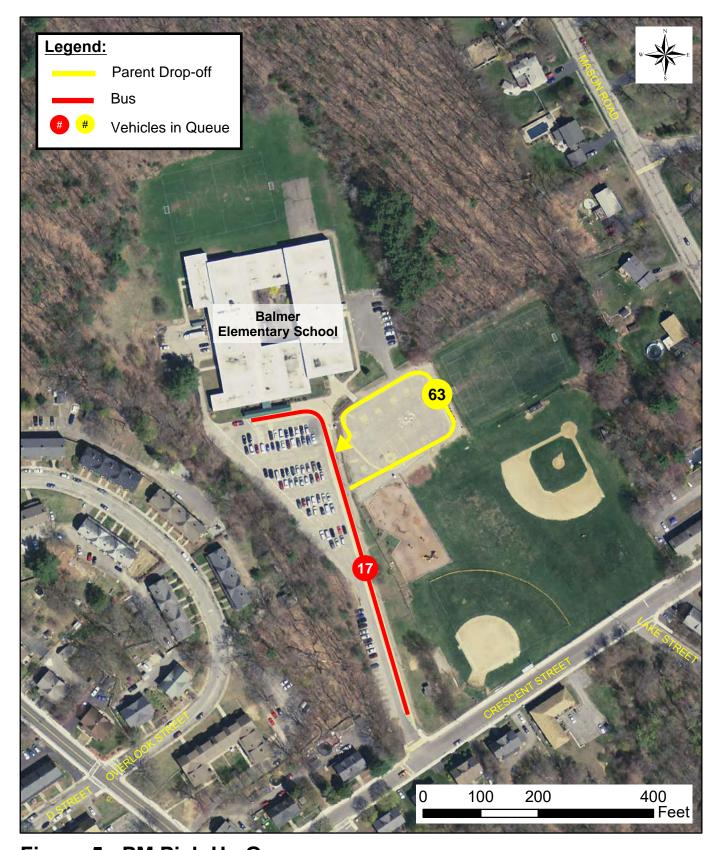
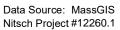

Table 1 quantifies the parent and bus drop-off/pick-up totals for the school during the site visit.

Table 1 - Balmer School Drop-Off/Pick-Up Quantity


| Туре        | Par      | ent     | Вι       | IS      | Mini-Bus/SP. ED |         |  |
|-------------|----------|---------|----------|---------|-----------------|---------|--|
| Time        | Drop-Off | Pick-Up | Drop-Off | Pick-Up | Drop-Off        | Pick-Up |  |
| 7:45 - 8:00 | 2        |         | 3        |         |                 |         |  |
| 8:00 - 8:15 | 40       |         | 11       |         |                 |         |  |
| 8:15- 8:30  | 32       |         | 3        |         | 1               |         |  |
| 1:45 - 2:00 |          | 4       |          | 1       |                 |         |  |
| 2:00 - 2:15 |          | 20      |          | 2       |                 |         |  |
| 2:15 - 2:30 |          | 27      |          | 4       |                 |         |  |
| 2:30 - 2:45 |          | 12      |          | 10      |                 | 1       |  |
| Total       | 74       | 63      | 17       | 17      | 1               | 1       |  |




**Figure 4: AM Drop-Off Queue**W. Edward Balmer Elementary School Northbridge, Massachusetts







**Figure 5: PM Pick-Up Queue**W. Edward Balmer Elementary School
Northbridge, Massachusetts



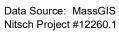


### 2.6 Balmer Elementary School Parking Supply and Demand

Nitsch Engineering performed a parking supply and demand count on September 12, 2017. The utilization of the lot was taken at 10:00 AM.

As shown on Figure 6, a total of 91 parking spaces were counted in four sections within the Balmer Elementary School, including 3 of which are accessible spaces. This meets the Architectural Access Board (AAB) Code of Massachusetts Regulations (521 CMR) for the required number of accessible parking spaces. The 3 accessible spaces were not utilized. The overall lot utilization was 74%.

Nitsch Engineering used the Institute of Transportation Engineers (ITE) publication Parking Generation, 4th Edition to estimate the parking demands for the two future school options (Grades 2-4 with 510 students and staff of 49, or PK-5 with 1110 students and staff of 80).


Parking generation rates for the Elementary School were based on Land Use Code (LUC) 520 (Elementary School). We used the Number of Students as the independent variable to base the ITE parking generation rates.

Based on the ITE parking generation rates, the parking demand for a school with a population of 510 is 88 parking spaces.

Based on the ITE parking generation rates, the parking demand for a school with a population of 1110 is 189 parking spaces.



**Figure 6: Parking**W. Edward Balmer Elementary School Northbridge, Massachusetts





### 3 SAFETY ANALYSIS

### 3.1 Crash Data

Nitsch Engineering reviewed the crash data available from MassDOT for the three (3) most recent years available – 2013 to 2015 – for the study intersections. A summary of the crashes, including the severity, and the manner of collision are shown in Table 2.

Table 2 - Crash Summary

|                          | No   | umber of Cr      | Severity |     |     |     |    | Mai | nner of | Percent During |                    |                                    |                            |                           |
|--------------------------|------|------------------|----------|-----|-----|-----|----|-----|---------|----------------|--------------------|------------------------------------|----------------------------|---------------------------|
| Location                 | Year | Total<br>Crashes | Average  | PDª | PI⁵ | NR° | F⁴ | Ae  | REf     | HOa            | Other <sup>h</sup> | Incl.<br>Ped-<br>Bike <sup>j</sup> | Peak<br>Hours <sup>k</sup> | Wet/Icy<br>Conditi<br>ons |
| N. Main St               | 2013 | 0                |          | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| at<br>Crescent           | 2014 | 1                | 1.00     | 0   | 1   | 0   | 0  | 1   | 0       | 0              | 0                  | 0                                  | 100%                       | 0%                        |
| St                       | 2015 | 2                |          | 2   | 0   | 0   | 0  | 1   | 0       | 0              | 1                  | 0                                  | 100%                       | 0%                        |
| Crescent                 | 2013 | 0                |          | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| St at                    | 2014 | 0                | 0.67     | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| Arcade St                | 2015 | 2                |          | 2   | 0   | 0   | 0  | 1   | 0       | 0              | 1                  | 0                                  | 50%                        | 50%                       |
| Main Ot at               | 2013 | 1                | 1.33     | 1   | 0   | 0   | 0  | 1   | 0       | 0              | 0                  | 0                                  | 100%                       | 0%                        |
| Main St at<br>N. Main St | 2014 | 1                |          | 0   | 1   | 0   | 0  | 0   | 1       | 0              | 0                  | 0                                  | 0%                         | 100%                      |
|                          | 2015 | 2                |          | 1   | 1   | 0   | 0  | 1   | 0       | 0              | 1                  | 0                                  | 0%                         | 50%                       |
|                          | 2013 | 0                | 0.33     | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%!                        | 0%                        |
| Main St at<br>Lake St    | 2014 | 0                |          | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| Lake of                  | 2015 | 1                |          | 1   | 0   | 0   | 0  | 0   | 0       | 0              | 1                  | 0                                  | 0%                         | 0%                        |
| Crescent                 | 2013 | 0                |          | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| St at Lake               | 2014 | 0                | 0.00     | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| St                       | 2015 | 0                |          | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| Crescent                 | 2013 | 1                | _        | 1   | 0   | 0   | 0  | 1   | 0       | 0              | 0                  | 0                                  | 100%                       | 100%                      |
| St at                    | 2014 | 0                | 0.33     | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| School Dr                | 2015 | 0                |          | 0   | 0   | 0   | 0  | 0   | 0       | 0              | 0                  | 0                                  | 0%                         | 0%                        |
| Total                    | ALL  | 11               | 3.67     | 8   | 3   | 0   | 0  | 6   | 1       | 0              | 4                  | 0                                  | 55%                        | 36%                       |

<sup>a</sup>Property Damage Only; <sup>b</sup>Personal Injury Only (non-Fatal Injury); <sup>c</sup>Not Reported; <sup>d</sup>Fatality; <sup>e</sup>Angle; <sup>f</sup>Rear end; <sup>g</sup>Head on; <sup>h</sup>Sideswipe, opposite direction; sideswipe, same direction, single vehicle crash, rear-to-rear, not reported, unknown, etc.; <sup>l</sup>Includes pedestrian or cyclist; <sup>k</sup>Occurred between 7-9am or 4-6pm

A total of 11 crashes were reported within the study areas for the six intersections from 2013 to 2015. In terms of severity, eight of the crashes involved property damage only and three reported personal injury. In terms of manner of collision, six of the crashes were angle collisions, one was a rear-end crash, and four were of other type. Approximately 55% of the crashes occurred during the peak hours of 7:00 to 9:00 AM or 4:00 to 6:00 PM and 36% occurred during wet/icy conditions. Analyzing the crash data, as most crashes were of angle or rear-end type, the crashes were most likely caused by driver carelessness or inattentiveness.

A factor in determining overall safety of an intersection is to calculate the crash rate by using MassDOT Crash Rate worksheets. The rate at an intersection can be compared to the average for its district and statewide.

The crash data and crash rates are summarized in Appendix A-3.

### 4 EXISTING TRAFFIC CONDITIONS

### 4.1 2017 Traffic Count Data

Automatic Traffic Recorder (ATR) Data

Precision Data Industries, LLC (PDI) of Berlin, Massachusetts was retained by Nitsch Engineering to conduct 48-hour Automatic Traffic Recorder (ATR) vehicle traffic counts throughout the study area; from Tuesday, November 28 to Wednesday, November 29, 2017 (Table 3). A copy of the raw traffic count data is included in Appendix A-1.

Table 3 - Automatic Traffic Recorder (ATR) Summary

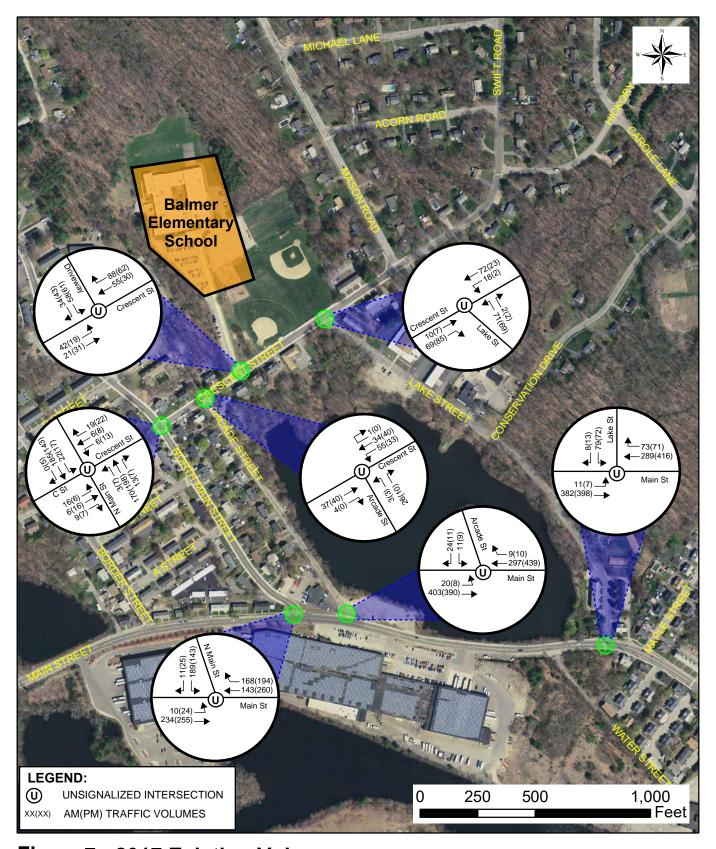
|                                               |                                                                                                                                                             | ADT <sup>a</sup>              |     |    |         | PEAK HOUR TRAFFIC             |                             |    |                          |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----|----|---------|-------------------------------|-----------------------------|----|--------------------------|--|--|--|
| LOCATION                                      | PERIOD                                                                                                                                                      | VOLUMES<br>(vpd) <sup>b</sup> |     |    | PERIOD  | VOLUMES<br>(vph) <sup>c</sup> | DIRECTIONAL<br>DISTRIBUTION |    | K<br>factor <sup>d</sup> |  |  |  |
| North Main<br>Street<br>north of              | Weekday                                                                                                                                                     | 4,950                         | 50% | NB | Morning | 403                           | 51.61%                      | SB | 0.08                     |  |  |  |
| Main Street                                   |                                                                                                                                                             |                               |     |    | Evening | 464                           | 52.37%                      | NB | 0.09                     |  |  |  |
| Crescent<br>Street east<br>of the<br>existing | Weekday                                                                                                                                                     | 1,366                         | 51% | WB | Morning | 226                           | 61.06%                      | WB | 0.17                     |  |  |  |
| School<br>Driveway                            |                                                                                                                                                             |                               |     |    | Evening | 204                           | 52.45%                      | EB | 0.15                     |  |  |  |
| Main Street<br>west of<br>Lake Street         | Weekday                                                                                                                                                     | 10,476                        | 50% | ЕВ | Morning | 710                           | 54.93%                      | EB | 0.07                     |  |  |  |
|                                               |                                                                                                                                                             |                               |     |    | Evening | 891                           | 53.31%                      | WB | 0.09                     |  |  |  |
| <sup>a</sup> Average Daily T                  | <sup>a</sup> Average Daily Traffic; <sup>b</sup> Vehicles per day; <sup>c</sup> Vehicles per hour; <sup>d</sup> Percent of daily traffic (shown as decimal) |                               |     |    |         |                               |                             |    |                          |  |  |  |

### Turning Movement Count (TMC) Data

PDI collected Turning Movement Counts (TMC) data for the study area intersections near the Balmer Elementary School from Tuesday, November 28 to Wednesday, November 29, 2017 from 7:00 AM to 9:00 AM and 1:30 PM to 3:30 PM to capture both morning and afternoon peak periods for the school. The TMC data included bicycle and pedestrian counts. The peak hours within the study area were established as 7:00 AM to 8:00 AM during the weekday morning period and 2:00 PM to 3:00 PM during the afternoon period. The 2017 Existing Traffic Volumes are shown in Figure 7.

### Vehicle Travel Speeds

PDI measured vehicle travel speeds at the ATR locations at the time of the traffic count. The 85th percentile speed, meaning the speed at which 85% of the vehicles are at or below, is noted because of its importance in determining appropriate roadway speed limits and for calculating required sight distance. The speed data is shown in Table 4.


Table 4 - Vehicle Travel Speeds

| LOCATION                               | POSTED<br>SPEED<br>(MPH <sup>a</sup> ) | 85th<br>PERCENTILE<br>SPEED<br>(MPH <sup>a</sup> ) |
|----------------------------------------|----------------------------------------|----------------------------------------------------|
| North Main Street north of Main Street |                                        |                                                    |
| Northbound                             | 30                                     | 37                                                 |
| Southbound                             | 30                                     | 37                                                 |
| Crescent Street and School Driveway    |                                        |                                                    |
| Westbound                              | 20                                     | 30                                                 |
| Eastbound                              | 20                                     | 28                                                 |
| Main Street west of Water Street       |                                        |                                                    |
| Westbound                              | 30                                     | 41                                                 |
| Eastbound                              | 30                                     | 42                                                 |
| a = Miles per hour                     |                                        | l                                                  |

Note: 85th Percentile Speeds were averaged between the full two days of data collected

### 4.2 **Seasonal Adjustment**

Nitsch Engineering researched data from MassDOT to establish if any seasonal adjustment to the traffic counts was necessary. We used MassDOT's 2013 Weekday Seasonal Adjustment Factors, which is the latest data set available. The data compares monthly traffic volumes from different types of roadways across the Commonwealth to compare the traffic volumes from each individual month to the annual average. During the month of September on urban arterials and collectors in this area, traffic volumes are approximately 7% higher than an average month. Additionally, the counts were performed while school was in full session, so the traffic counts represent the average condition with respect to traffic within the study area. To be conservative, we made no adjustment to the collected volumes. The Weekday Seasonal Adjustment Factors are included in Appendix A-2.



**Figure 7: 2017 Existing Volumes** W. Edward Balmer Elementary School Northbridge, Massachusetts

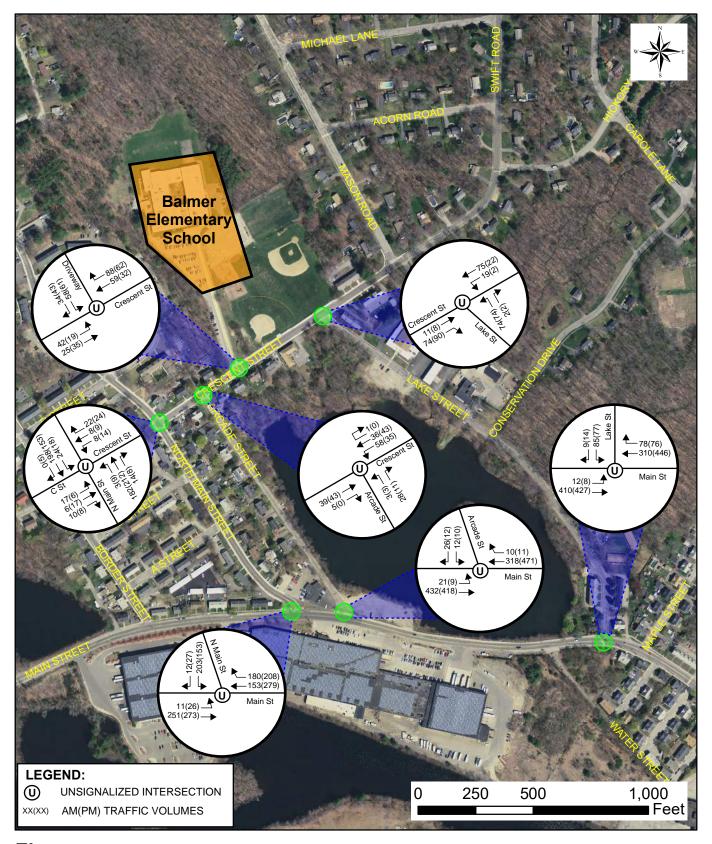


### 5 FUTURE NO-BUILD TRAFFIC CONDITIONS

Nitsch Engineering used the 2017 existing traffic volumes as the baseline for projecting traffic volumes for the chosen seven-year design horizon to the 2024 future no-build condition. To determine the future 2024 No-Build condition, the following steps are included:

- Project existing 2017 traffic volumes seven years in the future to the horizon year (2024) using an annual background traffic growth factor;
- Add traffic volumes associated with any planned developments that may impact the study area; and
- Analyze the study area location to determine future operational statistics.

### 5.1 Background Growth


Nitsch Engineering used the previous 10-year data from MassDOT count station #3192, located on Hill Street approximately 1.7 miles north of Main Street to calculate the background traffic growth. We used an annual background traffic growth factor of 1%, which is also consistent with recent MassDOT projects in eastern Massachusetts.

### 5.2 Planned Development

Nitsch Engineering contacted the Town of Northbridge to establish if there are any planned development projects in the vicinity of the study that would add additional trips in the near future. Per the Town of Northbridge, there are no new planned developments in the vicinity of Balmer Elementary School.

### 5.3 No-Build Traffic Volumes

The 2024 No-Build Traffic Volumes are shown in Figure 8 and are derived by applying the compounded traffic growth rate of 1% per year over the seven-year design horizon to project the 2024 traffic volumes.



**Figure 8: 2024 Future Volumes - No Build** W. Edward Balmer Elementary School Northbridge, Massachusetts



### 6 FUTURE CONDITIONS

Nitsch Engineering performed a design year traffic analysis to compare existing traffic operations with the proposed conditions of constructing a new Balmer Elementary School building and grounds on the existing site based on the two enrollment options of 510 and 1,110 students.

Sketch plans of the four redevelopment options for constructing a new Balmer Elementary School on the existing site are shown in Appendix A-4. The sketch plans show the proposed driveway locations of the school on an existing base map with the site location and outline.

The proposed school options will provide many enhancements to traffic circulations and controls such as a new egress to North Main Street, providing an extended parent queue on site, separation of cars and buses, providing a dedicated delivery access and increased parking.

### 6.1 Proposed School Access and Egress, Circulation, Bus and Parent Pick-Up/Drop-Off

The proposed four development options for constructing a new Balmer Elementary School on the existing site will have identical access and egress points. The new School (regardless of the option) will continue to be accessed from Crescent Street now using two driveways. The access and egress to the school (parental dropoff and pick-up, as well as teachers and staff) will occur from the new driveway opposite Lake Street to the circular driveway at the new main entrance. The existing school driveway will also be used for pre-kindergarten parental drop-off and pick-up as well as access to the parking lots.

The bus and delivery traffic will arrive through the new driveway opposite Lake Street. The bus drop-off/pick-up will occur at the designated bus lane located south of the school.

A new one-way driveway will also allow vehicular egress to North Main Street.

### 6.2 Trip Generation for New School with 510 Student Enrollment Option (Option A)

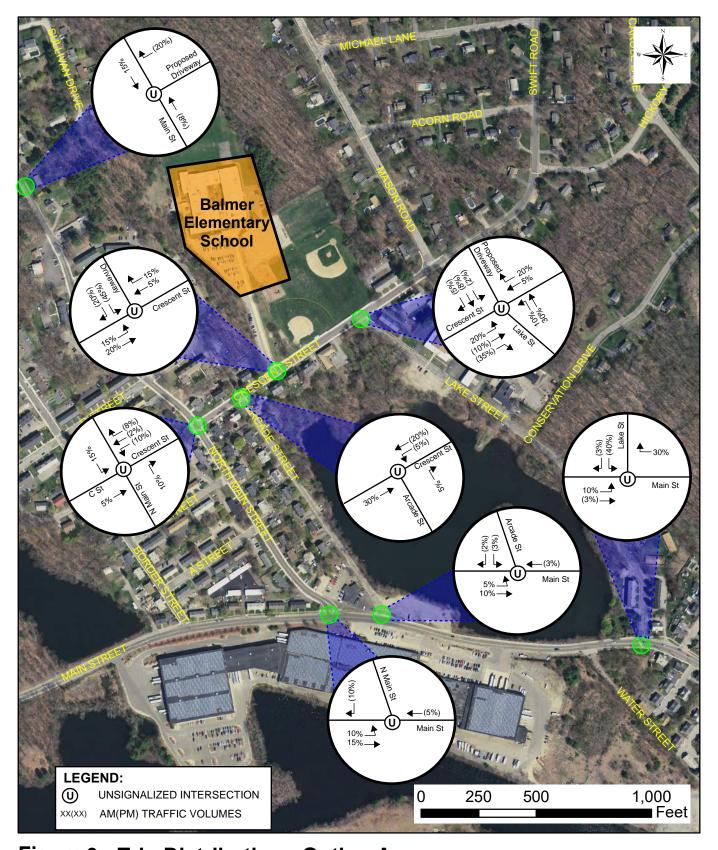
Nitsch Engineering used the Number of Students as the independent variable to base the trip generation rates. The existing school enrolls 569 students with 55 teachers and staff. The enrollment at the new school will be 510 students for 2<sup>nd</sup> through 4<sup>th</sup> grade, and approximately the same number of teachers and staff as there are currently. This means a reduction in school enrollment. To be conservative, we have used the existing enrollment data for our analysis.

Table 5 summarizes vehicle trips generated by the proposed school. The vehicle trips include teachers and staff at the new school.

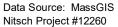
Table 5 - Proposed Trip Generation - Option A

| TIME PERIO |          | EXISTING |
|------------|----------|----------|
|            | ENTERING | 130      |
| AM         | EXITING  | 92       |
|            | TOTAL    | 222      |
|            | ENTERING | 81       |
| PM         | EXITING  | 104      |
|            | TOTAL    | 185      |

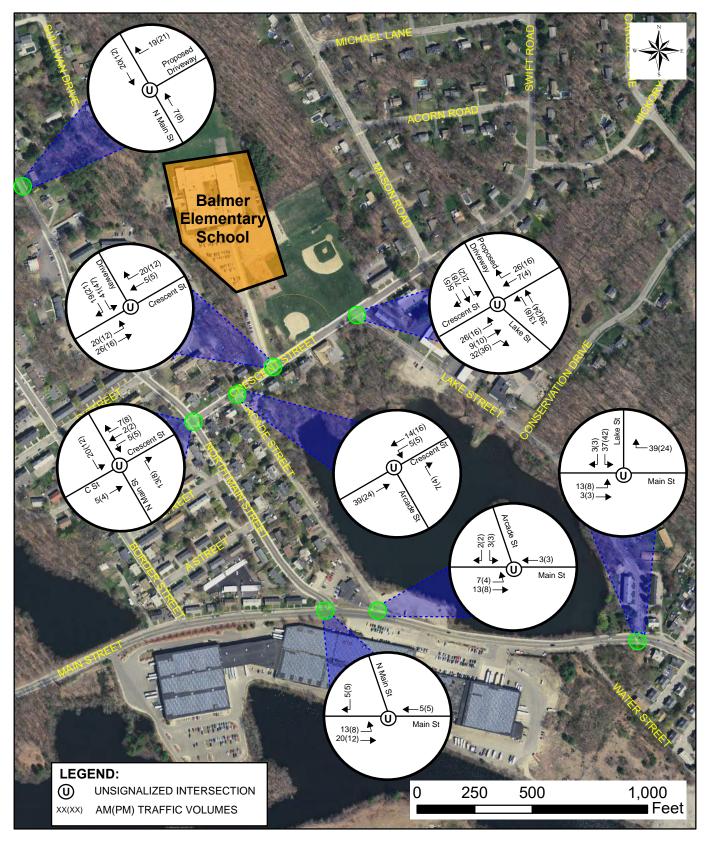
#### Trip Distribution, and Assignment - Option A


The trips to/from the proposed Balmer Elementary School were distributed and assigned based on the existing travel patterns and logical travel routes, which are based on the existing roadway network both within the Town of Northbridge and the surrounding region.

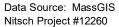
To properly assess the effect of trips to/from the proposed Balmer Elementary School, the proposed generated drop-off and pick-up trips (Table 6) were assigned to the network. The Trip Distribution Percentages specific to the proposed Balmer Elementary School are shown in Figure 9.


The resultant trip assignment volumes for both the weekday morning and weekday afternoon peak hours were calculated by multiplying the trip distribution by the trip generation from Table 6, and are shown in Figure 10 for the weekday morning and the weekday afternoon peak hours.

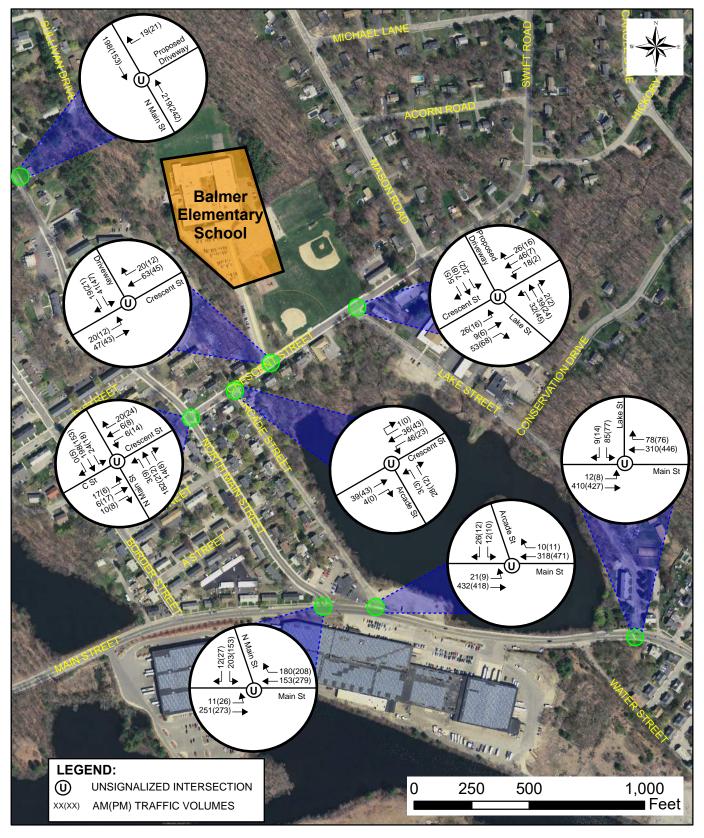
#### Proposed 2024 Build Volumes - Option A


For the proposed Balmer Elementary School, the corresponding trip assignment volumes were balanced based on the proposed access and egress to the school, and redistributed to yield the 2024 Build -Option A Volumes. The 2024 Future Build - Option A Volumes for the proposed Balmer Elementary School are shown in Figure 11.

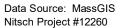



**Figure 9: Trip Distribution - Option A** W. Edward Balmer Elementary School Northbridge, Massachusetts









**Figure 10: Trip Assignment - Option A** W. Edward Balmer Elementary School Northbridge, Massachusetts







**Figure 11: 2024 Future Volumes - Build Option A** W. Edward Balmer Elementary School Northbridge, Massachusetts





#### 6.3 Trip Generation for New School with 1110 Student Enrollment Option (Option B)

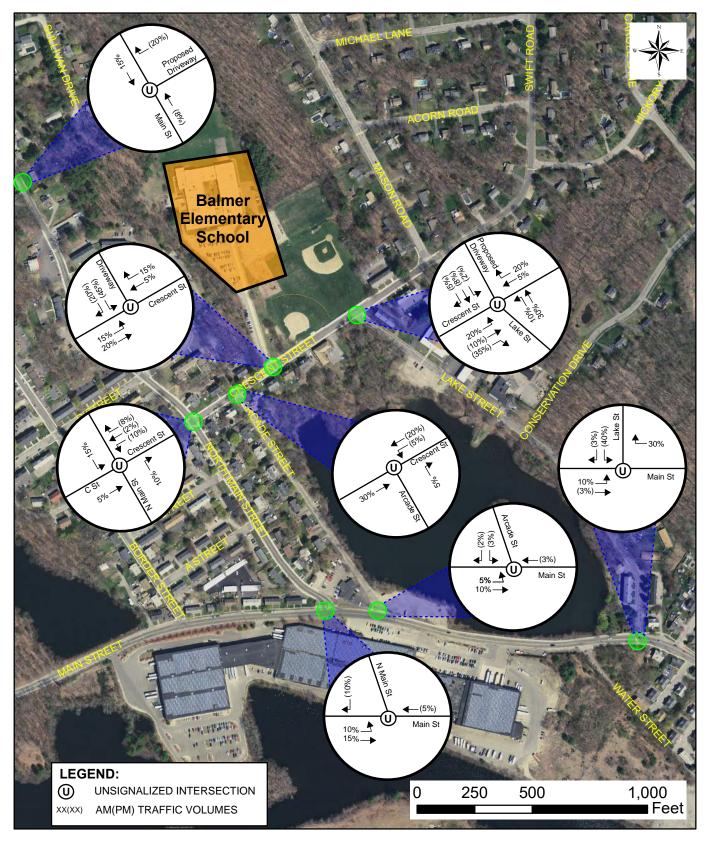
Nitsch Engineering used the Number of Students as the independent variable to base the trip generation rates. The existing school enrolls 569 students with 55 teachers and staff. The enrollment at the new school will be 1110 students for pre-kindergarten through 5<sup>th</sup> grade, and approximately 80 teachers and staff. This means that the school enrollment will double, or grow by approximately 100%. The proposed school trip generation was calculated by increasing the existing trips entering and exiting the school by 100% to present a conservative analysis of the School Project. Table 6 summarizes vehicle trips generated by the existing and proposed school.

Table 6 - Proposed Trip Generation - Option B

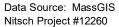
| TIME PERIO | םמ       | EXISTING | FUTURE VEHICLE TRIPS BASED ON TRAFFIC COUNTS |
|------------|----------|----------|----------------------------------------------|
|            | ENTERING | 130      | 260                                          |
| AM         | EXITING  | 92       | 184                                          |
|            | TOTAL    | 222      | 444                                          |
|            | ENTERING | 81       | 162                                          |
| PM         | EXITING  | 104      | 208                                          |
|            | TOTAL    | 185      | 370                                          |

Table 6 shows that the proposed Balmer Elementary School would result in approximately 222 additional entering and exiting trips during morning drop-off, and approximately 185 additional entering and exiting trips during afternoon pick-up. The increase in vehicle trips includes teachers and staff at the new school.

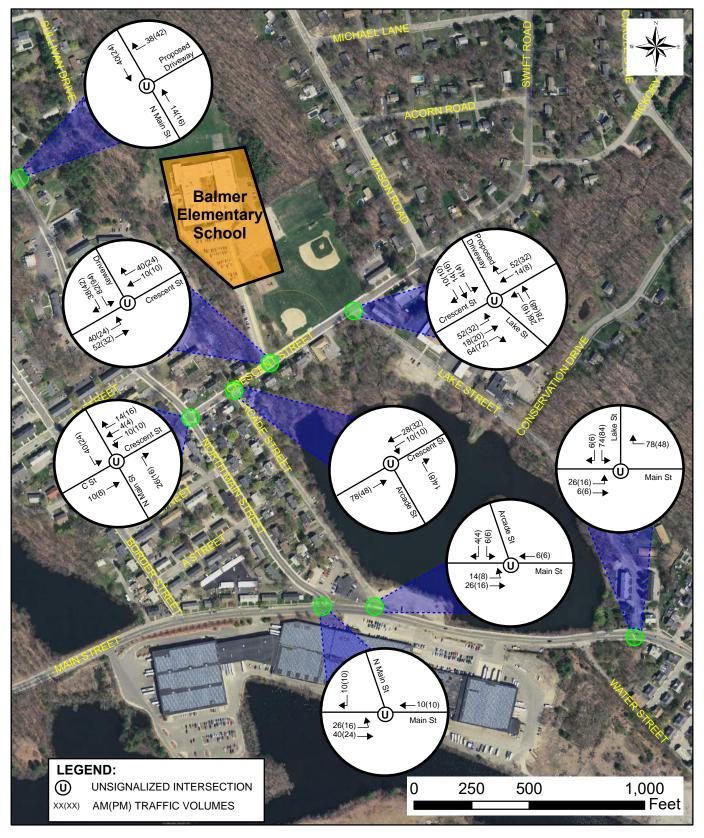
Trip Distribution, and Assignment – Option B


The trips to/from the proposed Balmer Elementary School were distributed and assigned based on the existing travel patterns and logical travel routes, which are based on the existing roadway network both within the Town of Northbridge and the surrounding region.

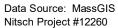
To properly assess the effect of trips to/from the proposed Balmer Elementary School, the proposed generated drop-off and pick-up trips were assigned to the network. The Trip Distribution Percentages specific to the proposed Balmer Elementary School are shown in Figure 12.


The resultant trip assignment volumes for both the weekday morning and weekday afternoon peak hours were calculated by multiplying the trip distribution by the trip generation from Table 7, and are shown in Figure 13 for the weekday morning and the weekday afternoon peak hours.

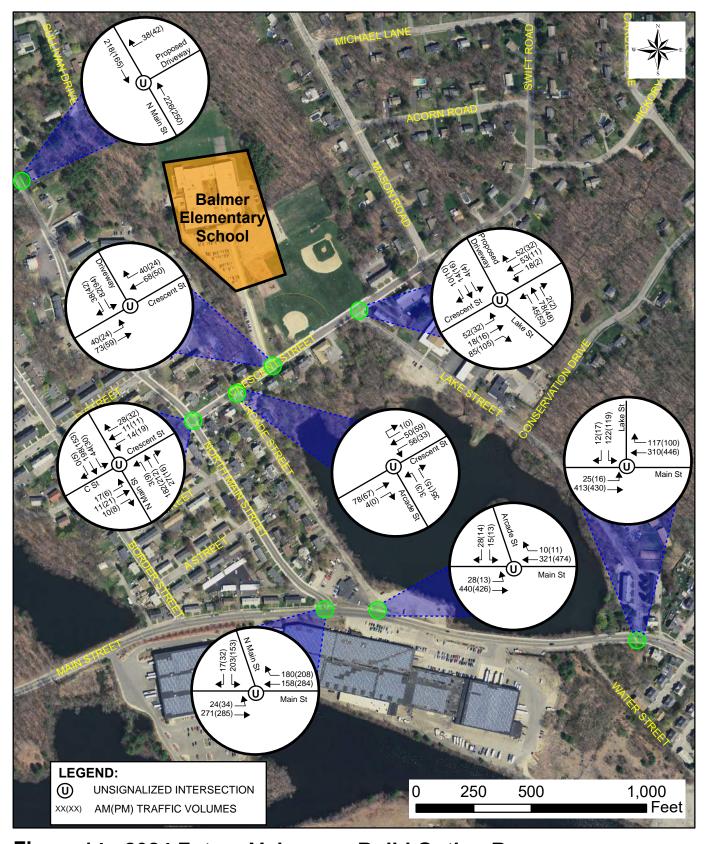
Proposed 2024 Build Volumes – Option B


For the proposed Balmer Elementary School, the corresponding trip assignment volumes were balanced based on the proposed access and egress to the school, and added to the 2024 No-Build Volumes to yield the 2024 Build Volumes. The 2024 Future Build – Option B Volumes for the proposed Balmer Elementary School are shown in Figure 14.

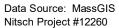



**Figure 12: Trip Distribution - Option B** W. Edward Balmer Elementary School Northbridge, Massachusetts









**Figure 13: Trip Assignment - Option B**W. Edward Balmer Elementary School
Northbridge, Massachusetts







**Figure 14: 2024 Future Volumes - Build Option B** W. Edward Balmer Elementary School Northbridge, Massachusetts





#### 7 OPERATIONS ANALYSIS

#### 7.1 Level of Service Criteria

Level of Service (LOS) is a qualitative measure describing operational conditions within a traffic stream. Six (6) LOS criteria are used to describe the quality of traffic flow for any type of facility controls. LOS A represents the best operating conditions, and LOS-F represents the worst operating conditions. Nitsch Engineering analyzed the levels of service for signalized and unsignalized intersections using Synchro 8 software, which is based on the traffic operational analysis methodology of the Highway Capacity Manual<sup>2</sup> (HCM). Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Table 7 summarizes the relationship between LOS and average control delay for signalized and unsignalized intersections.

Table 7 - Level of Service Criteria

| 0.01             | IZED INTERSECTIONS              | UNSIGNALIZED INTERSECTIONS      |               |                                   |  |  |  |
|------------------|---------------------------------|---------------------------------|---------------|-----------------------------------|--|--|--|
| Level of Service | Control Delay (seconds/vehicle) | Level of S<br>Volume-to-C<br>Ra | apacity (v/c) | Control Delay (seconds/vehicle)   |  |  |  |
|                  |                                 | v/c ≤ 1.0                       | v/c > 1.0     | Control Boldy (Coconida/Vollicio) |  |  |  |
| А                | 0 to 10                         | А                               | F             | 0 to 10                           |  |  |  |
| В                | >10 to 20                       | В                               | F             | >10 to 15                         |  |  |  |
| С                | >20 to 35                       | С                               | F             | >15 to 25                         |  |  |  |
| D                | >35 to 55                       | D                               | F             | >25 to 35                         |  |  |  |
| Е                | >55 to 80                       | Е                               | F             | >35 to 50                         |  |  |  |
| F                | >80                             | F                               | F             | >50                               |  |  |  |

#### 7.2 Capacity Analysis

Nitsch Engineering performed traffic analyses to evaluate traffic operations for the 2017 Existing Conditions, 2024 No-Build Conditions, and 2024 Build Conditions during the weekday morning and weekday afternoon peak hours at the study intersections. The analyses depict the volume-to-capacity (v/c) ratio, vehicle delay, LOS, and the 50th/95th percentile vehicle queues.

\_

<sup>&</sup>lt;sup>2</sup> Highway Capacity Manual, 2010 Edition, Transportation Research Board (TRB), Washington, D.C.

### 7.3 2017 Existing Capacity Analysis

Nitsch Engineering analyzed the 2017 Existing Conditions traffic operations at the study intersections based on the existing traffic counts performed by PDI in November 2017. The Level of Service Summary is shown in Table 8. The analysis worksheets are provided in Appendix A-6.

Table 8 - Level of Service Summary - 2017 Existing Conditions

| Tuble 6 Le         | vei oi c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Del Vice O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ummai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y – 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / EXIST                              | ing Conditions                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                    |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--|
| DIRECTION /        | WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EEKDAY M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEAK HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DUR                                  | WEEKDAY EVENING PEAK HOUR              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                    |  |
| MOVEMENT'          | V/C <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DELAY <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOS <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 <sup>th</sup><br>Q <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95 <sup>th</sup><br>Q <sup>6</sup>   | V/C <sup>2</sup>                       | DELAY <sup>3</sup> | LOS <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 <sup>th</sup><br>Q <sup>5</sup> | 95 <sup>th</sup><br>Q <sup>6</sup> |  |
| Main St EB-LT      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                    | 0.04                                   | 1.4                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 3                                  |  |
| Main St WB-TR      | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                    | 0.31                                   | 0.0                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | 0                                  |  |
| N. Main St SB-LR   | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72                                   | 0.54                                   | 24.8               | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 78                                 |  |
| Main St EB-LT      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                    | 0.01                                   | 0.3                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 1                                  |  |
| Main St WB-TR      | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.29                                   | 0.0                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 0                                  |  |
| Arcade St SB-LR    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                    | 0.05                                   | 14.4               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 4                                  |  |
| Main St EB-LT      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                    | 0.01                                   | 0.4                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                  | 1                                  |  |
| Main St WB-TR      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.35                                   | 0.0                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                  | 0                                  |  |
| Lake St SB-LR      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114                                  | 0.46                                   | 28.0               | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 58                                 |  |
| Ct St EB-LTR       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                   | 0.09                                   | 12.3               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                  | 7                                  |  |
| Crescent St WB-LTR | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                   | 0.12                                   | 12.0               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                  | 10                                 |  |
| N. Main St SB-LTR  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                    | 0.02                                   | 1.1                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                  | 1                                  |  |
| N. Main St NB-LTR  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.01                                   | 0.4                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                  | 1                                  |  |
| Crescent St EB-TR  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.04                                   | 0.0                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                  | 0                                  |  |
| Crescent St WB-LT  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                    | 0.04                                   | 3.7                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 3                                  |  |
| Arcade St NB-LR    | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                    | 0.02                                   | 9.3                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 3                                  |  |
| Crescent St EB-LT  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                    | 0.01                                   | 2.9                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 1                                  |  |
| Crescent St WB-TR  | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.06                                   | 0.0                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 0                                  |  |
| School Dr SB-LR    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                   | 0.13                                   | 9.6                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 11                                 |  |
| Crescent St EB-TR  | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.10                                   | 7.0                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 0                                  |  |
| Crescent St WB-LT  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.03                                   | 7.4                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 0                                  |  |
| Lake St NB-LR      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    | 0.09                                   | 7.8                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | 0                                  |  |
|                    | DIRECTION / MOVEMENT¹  Main St EB-LT  Main St WB-TR  N. Main St SB-LR  Main St WB-TR  Arcade St SB-LR  Main St EB-LT  Main St WB-TR  Lake St SB-LR  Ct St EB-LTR  Crescent St WB-LTR  N. Main St SB-LTR  N. Main St SB-LTR  Crescent St WB-LTR  Crescent St EB-TR  Crescent St WB-LT  Arcade St NB-LR  Crescent St WB-LT  Arcade St NB-LR  Crescent St WB-LT  Arcade St NB-LR  Crescent St B-LT  Crescent St EB-LT  Crescent St B-LT  Crescent St WB-TR  School Dr SB-LR  Crescent St WB-LT  Crescent St WB-LT | DIRECTION / MOVEMENT¹         WI MOVEMENT¹           Main St EB-LT         0.01           Main St WB-TR         0.21           N. Main St SB-LR         0.51           Main St EB-LT         0.02           Main St WB-TR         0.20           Arcade St SB-LR         0.07           Main St WB-TR         0.26           Lake St SB-LR         0.67           Ct St EB-LTR         0.13           Crescent St WB-LTR         0.01           N. Main St SB-LTR         0.02           N. Main St NB-LTR         0.01           Crescent St WB-LT         0.08           Arcade St NB-LR         0.11           Crescent St EB-LT         0.03           Crescent St EB-LT         0.09           School Dr SB-LR         0.12           Crescent St WB-LT         0.09           Crescent St WB-LT         0.12 | DIRECTION / MOVEMENT¹         WEEKDAY Movement¹           Main St EB-LT         0.01         0.4           Main St WB-TR         0.21         0.0           N. Main St SB-LR         0.51         19.4           Main St EB-LT         0.02         0.6           Main St WB-TR         0.20         0.0           Arcade St SB-LR         0.07         12.3           Main St WB-TR         0.26         0.0           Lake St SB-LR         0.67         36.7           Ct St EB-LTR         0.13         12.1           Crescent St WB-LTR         0.13         11.8           N. Main St SB-LTR         0.02         0.9           N. Main St NB-LTR         0.01         0.3           Crescent St EB-TR         0.04         0.0           Crescent St WB-LT         0.08         9.4           Arcade St NB-LR         0.11         5.6           Crescent St EB-LT         0.03         5.2           Crescent St WB-TR         0.09         0.0           School Dr SB-LR         0.12         10.1           Crescent St WB-LT         0.09         7.1           Crescent St WB-LT         0.09         7.1 | WEEKDAY MORNING MOVEMENT¹           V/C²         DELAY³         LOS⁴           Main St EB-LT         0.01         0.4         A           Main St WB-TR         0.21         0.0         A           N. Main St SB-LR         0.51         19.4         C           Main St EB-LT         0.02         0.6         A           Main St WB-TR         0.20         0.0         A           Arcade St SB-LR         0.07         12.3         B           Main St WB-TR         0.03         0.8         A           Main St WB-TR         0.26         0.0         A           Lake St SB-LR         0.67         36.7         E           Ct St EB-LTR         0.13         12.1         B           Crescent St WB-LTR         0.01         0.3         A           N. Main St NB-LTR         0.01         0.3         A           Crescent St EB-TR         0.04         0.0         A           Crescent St WB-LT         0.08         9.4         A           Arcade St NB-LR         0.11         5.6         A           Crescent St WB-TR         0.09         0.0         A           Crescent St WB-TR         0.09 | MOVEMENT   WEEKDAY MORNING PEAK HOND | Nain St BB-LT   0.01   0.4   A   -   1 | Note               | Nain St EB-LT   0.01   0.4   A   -   1   0.04   0.4   0.01   0.4   A   -   1   0.04   0.01   0.4   A   -   1   0.04   0.01   0.4   A   -   0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.31   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0. | Name                               | Nain St BB-LT                      |  |

<sup>1</sup> Volume to Capacity Ratio; <sup>2</sup> Vehicle Delay, measured in seconds; <sup>3</sup> Level Of Service; <sup>4</sup> 50<sup>th</sup> Percentile Queue (in feet); <sup>5</sup> 95th Percentile Queue (in feet) based upon 22 feet per vehicle; \* = Defacto Left Lane; # = volume exceeds capacity, queue may be longer; m = 95th percentile queue is metered by upstream signal; ~ = Volume exceeds capacity, queue is theoretically infinite

### 7.4 2024 No-Build Capacity Analysis

Nitsch Engineering analyzed the 2024 No-Build Conditions traffic operations at the study intersections (See Section 5). The Level of Service Summary is shown in Table 9. The analysis worksheets are provided in Appendix A-6.

Table 9 - Level of Service Summary - 2024 No - Build Conditions

| LOCATION                  | DIRECTION /        |                  | EEKDAY M           |                  |                                    |                                    |                  | EEKDAY E           |                  | PEAK HO                            | OUR                                |
|---------------------------|--------------------|------------------|--------------------|------------------|------------------------------------|------------------------------------|------------------|--------------------|------------------|------------------------------------|------------------------------------|
| LOCATION                  | MOVEMENT1          | V/C <sup>2</sup> | DELAY <sup>3</sup> | LOS <sup>4</sup> | 50 <sup>th</sup><br>Q <sup>5</sup> | 95 <sup>th</sup><br>Q <sup>6</sup> | V/C <sup>2</sup> | DELAY <sup>3</sup> | LOS <sup>4</sup> | 50 <sup>th</sup><br>Q <sup>5</sup> | 95 <sup>th</sup><br>Q <sup>6</sup> |
|                           | Main St EB-LT      | 0.01             | 0.5                | Α                | -                                  | 1                                  | 0.04             | 1.5                | Α                | -                                  | 3                                  |
| Main St at<br>N. Main St  | Main St WB-TR      | 0.22             | 0.0                | Α                | -                                  | 0                                  | 0.33             | 0.0                | Α                | -                                  | 0                                  |
|                           | N. Main St SB-LR   | 0.58             | 22.5               | С                | -                                  | 90                                 | 0.63             | 30.5               | D                | -                                  | 101                                |
|                           | Main St EB-LT      | 0.02             | 0.6                | Α                | -                                  | 1                                  | 0.01             | 0.3                | Α                | -                                  | 1                                  |
| Main St at<br>Arcade St   | Main St WB-TR      | 0.21             | 0.0                | Α                | -                                  | 0                                  | 0.31             | 0.0                | Α                | -                                  | 0                                  |
|                           | Arcade St SB-LR    | 0.08             | 12.8               | В                | -                                  | 7                                  | 0.06             | 15.2               | С                | -                                  | 5                                  |
|                           | Main St EB-LT      | 0.03             | 0.8                | Α                | -                                  | 2                                  | 0.01             | 0.4                | Α                | -                                  | 1                                  |
| Main St at<br>Lake St     | Main St WB-TR      | 0.28             | 0.0                | Α                | ı                                  | 0                                  | 0.35             | 0.0                | Α                | -                                  | 0                                  |
|                           | Lake St SB-LR      | 0.79             | 51.9               | Е                | 1                                  | 157                                | 0.46             | 34.5               | D                | -                                  | 75                                 |
|                           | Ct St EB-LTR       | 0.15             | 12.7               | В                | 1                                  | 13                                 | 0.10             | 12.7               | В                | -                                  | 8                                  |
| N. Main St<br>at Crescent | Crescent St WB-LTR | 0.13             | 12.1               | В                | ı                                  | 12                                 | 0.13             | 12.5               | В                | -                                  | 11                                 |
| St                        | N. Main St SB-LTR  | 0.02             | 1.0                | Α                | ı                                  | 1                                  | 0.02             | 1.1                | Α                | -                                  | 1                                  |
|                           | N. Main St NB-LTR  | 0.01             | 0.3                | Α                | 1                                  | 0                                  | 0.01             | 0.5                | Α                | -                                  | 1                                  |
| Crescent St               | Crescent St EB-TR  | 0.04             | 0.0                | Α                | -                                  | 0                                  | 0.04             | 0.0                | Α                | -                                  | 0                                  |
| at Arcade                 | Crescent St WB-LT  | 0.12             | 5.7                | Α                | -                                  | 10                                 | 0.04             | 3.5                | Α                | -                                  | 3                                  |
| St                        | Arcade St NB-LR    | 0.08             | 9.4                | Α                | 1                                  | 7                                  | 0.02             | 9.3                | Α                | -                                  | 2                                  |
| Crescent St               | Crescent St EB-LT  | 0.03             | 4.9                | Α                | 1                                  | 2                                  | 0.01             | 2.7                | Α                | -                                  | 1                                  |
| at School                 | Crescent St WB-TR  | 0.9              | 0.0                | Α                | ı                                  | 0                                  | 0.06             | 0.0                | Α                | -                                  | 0                                  |
| Dr                        | School Dr SB-LR    | 0.13             | 10.2               | В                | -                                  | 11                                 | 0.13             | 9.6                | Α                | -                                  | 11                                 |
|                           | Crescent St EB-TR  | 0.10             | 7.1                | Α                | -                                  | 0                                  | 0.11             | 7.0                | Α                | -                                  | 0                                  |
| Crescent St at Lake St    | Crescent St WB-LT  | 0.12             | 7.8                | Α                | -                                  | 0                                  | 0.03             | 7.4                | Α                | -                                  | 0                                  |
|                           | Lake St NB-LR      | 0.10             | 8.0                | Α                | -                                  | 0                                  | 0.10             | 7.9                | Α                | -                                  | 0                                  |

1 Volume to Capacity Ratio; 2 Vehicle Delay, measured in seconds; 3 Level Of Service; 4 50th Percentile Queue (in feet); 5 95th Percentile Queue (in feet) based upon 22 feet per vehicle; \* = Defacto Left Lane; # = volume exceeds capacity, queue may be longer; m = 95th percentile queue is metered by upstream signal; ~ = Volume exceeds capacity, queue is theoretically infinite

#### 7.5 Traffic Signal Warrant

To quantify if additional mitigation would be necessary at the proposed school site, based on the student population, and at the access and egress point of Crescent Street at Lake Street, we performed a Signal Warrant Analysis for both Options A and B.

We performed the warrants based on the procedures outlined in the MUTCD 2009 edition. The MUTCD indicates nine (9) separate conditions under which a traffic signal warrant can be met, and they are shown below.

- 1. Warrant 1: Eight-Hour Vehicular Volume;
- 2. Warrant 2: Four-Hour Vehicular Volume;
- 3. Warrant 3: Peak Hour;
- 4. Warrant 4: Pedestrian Volume:
- 5. Warrant 5: School Crossing;
- 6. Warrant 6: Coordinated Signal System;
- 7. Warrant 7: Crash Experience;
- 8. Warrant 8: Roadway Network; and
- 9. Warrant 9: Intersection Near a Grade Crossing.

Given the criteria set forth in the MUTCD and the assumptions above, the intersection of Crescent Street at Lake Street does not meet any warrants for signalization. We believe that the recommendations outlined in Section 8.2 would represent the best return on investment with regards to handling the estimated traffic to and from the new Balmer Elementary School. The Traffic Signal Warrant Analysis is included in Appendix A-5.

#### 7.6 Sight Distance

Stopping Sight Distance (SSD) is the length of the roadway ahead that is visible to the driver and should be sufficiently long to enable a vehicle traveling at or near the design speed to stop before reaching a stationary object in its path. Stopping sight distance is the sum of the distance traversed by the vehicle from the instant the driver sights an object necessitating a stop to the instant the brakes are applied and the distance needed to stop the vehicle from the instant brake application begins.

Intersection Sight Distance (ISD) is the length of the leg of the departure sight triangle along the major road in both directions for a vehicle stopped on the minor road waiting to depart. The critical departure sight triangles for the school driveways are for traffic approaching from either the left or right for left turns from the school driveways onto Crescent Street and North Main Street. The methods for determining the sight distances needed by drivers approaching intersections are based on the same principles as stopping sight distance, but incorporate modified assumptions based on observed driver behavior at intersections.

The SSD and ISD values associated with a given design speed are shown in Table 10. The site distance evaluations for the intersection are shown in Table 11.

Table 10 - Sight Distance Criteria

| DESIGN<br>SPEED | DESIGN STOPPING SIGHT<br>DISTANCE VALUE <sup>1</sup><br>(SSD) | RECOMMENDED INTERSECTION<br>SIGHT DISTANCE VALUE <sup>2</sup><br>(ISD) |
|-----------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| (MPH)           | (FT)                                                          | (FT)                                                                   |
| 15              | 80                                                            | 170                                                                    |
| 20              | 115                                                           | 225                                                                    |
| 25              | 155                                                           | 280                                                                    |
| 30              | 200                                                           | 335                                                                    |
| 35              | 250                                                           | 390                                                                    |
| 40              | 305                                                           | 445                                                                    |
| 45              | 360                                                           | 500                                                                    |
| 50              | 425                                                           | 555                                                                    |
| 55              | 495                                                           | 610                                                                    |
| 60              | 570                                                           | 665                                                                    |
| 65              | 645                                                           | 720                                                                    |
| 70              | 730                                                           | 775                                                                    |
| 75              | 820                                                           | 830                                                                    |
| 80              | 910                                                           | 885                                                                    |

Source: A Policy on Geometric Design of Highways and Streets, AASHTO, Washington DC (2011)

<sup>1</sup>Design value based on a grade of less than 3%, a brake reaction distance predicted on a time of 2.5 seconds and a deceleration rate of 11.2 ft/s<sup>2</sup>

<sup>2</sup>Recommended value based on Case B1 - a stopped passenger car to turn left onto a two-lane highway with no median and grades 3% or less

The higher of the posted, or 85th percentile, speed was used to calculate the minimum sight distance to be conservative.

At the intersections of Crescent Street and the school driveways, both the SSD and ISD values meet the minimum values for turning vehicles onto Crescent Street and for both eastbound and westbound traffic on Crescent Street.

At the intersection of North Main Street and the school driveway, both the SSD and ISD values meet the minimum values for turning vehicles onto North Main Street and for both northbound and southbound traffic on North Main Street.

**Table 11 - Proposed Sight Distance Evaluation** 

| INTERSECTION                               | POSTED<br>SPEED<br>(MPH) | 85th<br>PERCENTILE<br>SPEED<br>(MPH) | MINIMUM<br>(FEET) <sup>1,2</sup> | MEASURED<br>(FEET) | OBSTRUCTION |
|--------------------------------------------|--------------------------|--------------------------------------|----------------------------------|--------------------|-------------|
| Crescent Street at School East Driveway    |                          |                                      |                                  |                    |             |
| Stopping Sight Distance:                   |                          |                                      |                                  |                    |             |
| Crescent Street Eastbound                  | 20                       | 28                                   | 182                              | >450               |             |
| Crescent Street Westbound                  | 20                       | 30                                   | 368                              | >450               |             |
| Intersection Sight Distance:               |                          |                                      |                                  |                    |             |
| Looking to the right from Driveway         | 20                       | 28                                   | 345                              | >450               |             |
| Looking to the left from Driveway          | 20                       | 30                                   | 345                              | >450               |             |
| Crescent Street at School West Driveway    |                          |                                      |                                  |                    |             |
| Stopping Sight Distance:                   |                          |                                      |                                  |                    |             |
| Crescent Street Eastbound                  | 20                       | 28                                   | 182                              | >450               |             |
| Crescent Street Westbound                  | 20                       | 30                                   | 368                              | >450               |             |
| Intersection Sight Distance:               |                          |                                      |                                  |                    |             |
| Looking to the right from Driveway         | 20                       | 28                                   | 345                              | >450               |             |
| Looking to the left from Driveway          | 20                       | 30                                   | 345                              | >450               |             |
| North Main Street at School North Driveway |                          |                                      |                                  |                    |             |
| Stopping Sight Distance:                   |                          |                                      |                                  |                    |             |
| North Main Street Southbound               | 25                       | 35                                   | 250                              | 600                |             |
| North Main Street Northbound               | 25                       | 35                                   | 390                              | 466                |             |
| Intersection Sight Distance:               |                          |                                      |                                  |                    |             |
| Looking to the right from Driveway         | 25                       | 35                                   | 250                              | 600                |             |
| Looking to the left from Driveway          | 25                       | 35                                   | 390                              | 466                |             |

<sup>&</sup>lt;sup>1</sup> Table 3-1. Stopping Sight Distance on Level Roadways

<sup>&</sup>lt;sup>2</sup> Table 9-6. Design Intersection Sight Distance - Case B1, Left Turn from Stop

### 7.7 2024 Build Capacity Analysis - Option A

Nitsch Engineering analyzed the 2024 Build Conditions traffic operations at the study intersections for reconstruction of a new Balmer Elementary School on the existing site with a student population of 510 (see Section 6). The Level of Service Summary is shown in Table 12. The analysis worksheets are provided in Appendix A-6.

Table 12 - Level of Service Summary - 2024 Build Option A Conditions

| LOCATION                 | DIRECTION /           |                  | EEKDAY M           |                  |                        |                                    |                  | EEKDAY E           |                  | PEAK HO                | OUR                                |
|--------------------------|-----------------------|------------------|--------------------|------------------|------------------------|------------------------------------|------------------|--------------------|------------------|------------------------|------------------------------------|
| LOCATION                 | MOVEMENT <sup>1</sup> | V/C <sup>2</sup> | DELAY <sup>3</sup> | LOS <sup>4</sup> | 50 <sup>th</sup><br>Q⁵ | 95 <sup>th</sup><br>Q <sup>6</sup> | V/C <sup>2</sup> | DELAY <sup>3</sup> | LOS <sup>4</sup> | 50 <sup>th</sup><br>Q⁵ | 95 <sup>th</sup><br>Q <sup>6</sup> |
|                          | Main St EB-LT         | 0.01             | 0.4                | Α                | -                      | 1                                  | 0.03             | 1.0                | Α                | -                      | 2                                  |
| Main St at<br>N. Main St | Main St WB-TR         | 0.21             | 0.0                | Α                | -                      | 0                                  | 0.31             | 0.0                | Α                | -                      | 0                                  |
|                          | N. Main St SB-LR      | 0.47             | 18.6               | С                | -                      | 62                                 | 0.51             | 23.7               | С                | -                      | 70                                 |
|                          | Main St EB-LT         | 0.02             | 0.6                | Α                | -                      | 1                                  | 0.01             | 0.3                | Α                | -                      | 1                                  |
| Main St at<br>Arcade St  | Main St WB-TR         | 0.21             | 0.0                | Α                | -                      | 0                                  | 0.31             | 0.0                | Α                | -                      | 0                                  |
|                          | Arcade St SB-LR       | 0.08             | 12.8               | В                | -                      | 7                                  | 0.06             | 15.2               | С                | -                      | 5                                  |
|                          | Main St EB-LT         | 0.01             | 0.4                | Α                | -                      | 1                                  | 0.01             | 0.3                | Α                | -                      | 1                                  |
| Main St at<br>Lake St    | Main St WB-TR         | 0.25             | 0.0                | Α                | -                      | 0                                  | 0.33             | 0.0                | Α                | -                      | 0                                  |
|                          | Lake St SB-LR         | 0.30             | 19.9               | С                | -                      | 31                                 | 0.34             | 24.0               | С                | -                      | 37                                 |
| N. Main St               | Ct St EB-LTR          | 0.07             | 12.4               | В                | -                      | 5                                  | 0.06             | 12.1               | В                | -                      | 5                                  |
|                          | Crescent St WB-LTR    | 0.07             | 11.1               | В                | -                      | 5                                  | 0.08             | 11.5               | В                | -                      | 7                                  |
| at Crescent<br>St        | N. Main St SB-LTR     | 0.02             | 1.0                | Α                | -                      | 1                                  | 0.01             | 0.9                | Α                | -                      | 1                                  |
|                          | N. Main St NB-LTR     | 0.00             | 0.0                | Α                | -                      | 0                                  | 0.01             | 0.4                | Α                | -                      | 1                                  |
| Crescent St              | Crescent St EB-TR     | 0.03             | 0.0                | Α                | -                      | 0                                  | 0.03             | 0.0                | Α                | -                      | 0                                  |
| at Arcade                | Crescent St WB-LT     | 0.03             | 4.2                | Α                | -                      | 2                                  | 0.02             | 2.6                | Α                | -                      | 1                                  |
| St                       | Arcade St NB-LR       | 0.03             | 8.7                | Α                | -                      | 3                                  | 0.02             | 8.7                | Α                | -                      | 1                                  |
| Crescent St              | Crescent St EB-LT     | 0.01             | 2.3                | Α                | -                      | 1                                  | 0.01             | 1.7                | Α                | -                      | 1                                  |
| at School                | Crescent St WB-TR     | 0.05             | 0.0                | Α                | -                      | 0                                  | 0.04             | 0.0                | Α                | -                      | 0                                  |
| Dr                       | School Dr SB-LR       | 0.08             | 9.6                | Α                | -                      | 6                                  | 0.08             | 9.4                | Α                | -                      | 7                                  |
|                          | Crescent St EB-LTR    | 0.02             | 2.3                | Α                | -                      | 1                                  | 0.01             | 1.4                | Α                | -                      | 1                                  |
| Crescent St<br>at New    | Crescent St WB-LTR    | 0.01             | 1.6                | Α                | -                      | 1                                  | 0.0              | 0.6                | Α                | -                      | 0                                  |
| School<br>Dr/Lake St     | School Dr SB-LTR      | 0.02             | 9.9                | Α                | -                      | 2                                  | 0.02             | 9.4                | Α                | -                      | 1                                  |
| Di/Lake of               | Lake St NB-LTR        | 0.11             | 10.8               | В                | -                      | 10                                 | 0.09             | 9.8                | Α                | -                      | 8                                  |
| N. Main St               | N. Main St SB -T      | 0.13             | 0.0                | Α                | -                      | 0                                  | 0.10             | 0.0                | Α                | -                      | 0                                  |
| at School                | N. Main St NB -T      | 0.14             | 0.0                | Α                | -                      | 0                                  | 0.15             | 0.0                | Α                | -                      | 0                                  |
| Dr                       | School Dr WB-LR       | 0.03             | 9.6                | Α                | -                      | 2                                  | 0.03             | 9.8                | Α                | -                      | 2                                  |

<sup>&</sup>lt;sup>1</sup> Volume to Capacity Ratio; <sup>2</sup> Vehicle Delay, measured in seconds; <sup>3</sup> Level Of Service; <sup>4</sup> 50<sup>th</sup> Percentile Queue (in feet); <sup>5</sup> 95th Percentile Queue (in feet) based upon 22 feet per vehicle; \* = Defacto Left Lane; # = volume exceeds capacity, queue may be longer; m = 95th percentile queue is metered by upstream signal; ~ = Volume exceeds capacity, queue is theoretically infinite

### 7.8 2024 Build Capacity Analysis - Option B

Nitsch Engineering analyzed the 2024 Build Conditions traffic operations at the study intersections for reconstruction of a new Balmer Elementary School on the existing site with a student population of 1110 (see Section 6). The Level of Service Summary is shown in Table 13. The analysis worksheets are provided in Appendix A-6.

.

Table 13 - Level of Service Summary - 2024 Build Option B Conditions

|                           | Table 13 - Level      | 0. 00.           | 7100 Guiii         | iiiai y          | 20212                              | Jana Op                            |                  |                    |                  |                                    |                                    |  |  |
|---------------------------|-----------------------|------------------|--------------------|------------------|------------------------------------|------------------------------------|------------------|--------------------|------------------|------------------------------------|------------------------------------|--|--|
| LOCATION                  | DIRECTION /           | WI               | EEKDAY M           | ORNING           | PEAK HO                            | DUR                                | W                | EEKDAY E           | VENING           | PEAK HO                            | OUR                                |  |  |
| LOCATION                  | MOVEMENT <sup>1</sup> | V/C <sup>2</sup> | DELAY <sup>3</sup> | LOS <sup>4</sup> | 50 <sup>th</sup><br>Q <sup>5</sup> | 95 <sup>th</sup><br>Q <sup>6</sup> | V/C <sup>2</sup> | DELAY <sup>3</sup> | LOS <sup>4</sup> | 50 <sup>th</sup><br>Q <sup>5</sup> | 95 <sup>th</sup><br>Q <sup>6</sup> |  |  |
|                           | Main St EB-LT         | 0.02             | 0.9                | Α                | ı                                  | 2                                  | 0.04             | 1.3                | Α                | ı                                  | 3                                  |  |  |
| Main St at<br>N. Main St  | Main St WB-TR         | 0.22             | 0.0                | Α                | -                                  | 0                                  | 0.31             | 0.0                | Α                | -                                  | 0                                  |  |  |
|                           | N. Main St SB-LR      | 0.52             | 21.1               | С                | -                                  | 74                                 | 0.55             | 25.9               | D                | -                                  | 78                                 |  |  |
|                           | Main St EB-LT         | 0.03             | 0.8                | Α                | -                                  | 2                                  | 0.01             | 0.4                | Α                | -                                  | 1                                  |  |  |
| Main St at<br>Arcade St   | Main St WB-TR         | 0.21             | 0.0                | Α                | -                                  | 0                                  | 0.31             | 0.0                | Α                | -                                  | 0                                  |  |  |
|                           | Arcade St SB-LR       | 0.10             | 13.3               | В                | -                                  | 8                                  | 0.08             | 15.9               | С                | -                                  | 7                                  |  |  |
|                           | Main St EB-LT         | 0.02             | 0.7                | Α                | •                                  | 2                                  | 0.02             | 0.5                | Α                | ı                                  | 1                                  |  |  |
| Main St at<br>Lake St     | Main St WB-TR         | 0.27             | 0.0                | Α                | •                                  | 0                                  | 0.35             | 0.0                | Α                | ı                                  | 0                                  |  |  |
|                           | Lake St SB-LR         | 0.46             | 25.9               | D                | ı                                  | 58                                 | 0.55             | 33.7               | D                | П                                  | 77                                 |  |  |
| N. Main St<br>at Crescent | Crescent St WB-LTR    | 0.09             | 13.4               | В                | 1                                  | 7                                  | 0.08             | 12.7               | В                | 1                                  | 6                                  |  |  |
|                           | C St EB-LTR           | 0.10             | 12.0               | В                | 1                                  | 8                                  | 0.12             | 12.0               | В                | 1                                  | 10                                 |  |  |
| St                        | N. Main St SB-LTR     | 0.04             | 1.7                | Α                | ı                                  | 3                                  | 0.02             | 1.4                | Α                | 1                                  | 2                                  |  |  |
|                           | N. Main St NB-LTR     | 0.00             | 0.1                | Α                | 1                                  | 0                                  | 0.01             | 0.3                | Α                | 1                                  | 1                                  |  |  |
| Crescent St               | Crescent St EB-TR     | 0.05             | 0.0                | Α                | •                                  | 0                                  | 0.04             | 0.0                | Α                | ı                                  | 0                                  |  |  |
| at Arcade                 | Crescent St WB-LT     | 0.04             | 4.1                | Α                | ı                                  | 3                                  | 0.02             | 2.8                | Α                | П                                  | 2                                  |  |  |
| St                        | Arcade St NB-LR       | 0.04             | 9.0                | Α                | 1                                  | 3                                  | 0.02             | 8.9                | Α                | 1                                  | 2                                  |  |  |
| Crescent St               | Crescent St EB-LT     | 0.03             | 2.8                | Α                | -                                  | 2                                  | 0.02             | 2.2                | Α                | -                                  | 1                                  |  |  |
| at School                 | Crescent St WB-TR     | 0.07             | 0.0                | Α                | ı                                  | 0                                  | 0.05             | 0.0                | Α                | 1                                  | 0                                  |  |  |
| Dr                        | School Dr SB-LR       | 0.17             | 10.6               | В                | 1                                  | 15                                 | 0.17             | 10.2               | Α                | 1                                  | 16                                 |  |  |
|                           | Crescent St EB-LTR    | 0.04             | 2.7                | Α                | ı                                  | 3                                  | 0.02             | 1.7                | Α                | ı                                  | 2                                  |  |  |
| Crescent St               | Crescent St WB-LTR    | 0.01             | 1.2                | Α                | ı                                  | 1                                  | 0.0              | 0.3                | Α                | ı                                  | 0                                  |  |  |
| at Lake St                | School Dr SB-LTR      | 0.05             | 10.9               | В                | ı                                  | 4                                  | 0.04             | 10.0               | В                | 1                                  | 3                                  |  |  |
|                           | Lake St NB-LTR        | 0.24             | 13.2               | В                | ı                                  | 23                                 | 0.16             | 11.0               | В                | 1                                  | 14                                 |  |  |
| N. Main St                | N. Main St SB -T      | 0.14             | 0.0                | Α                | -                                  | 0                                  | 0.11             | 0.0                | Α                | -                                  | 0                                  |  |  |
| at School                 | N. Main St NB -T      | 0.14             | 0.0                | Α                | -                                  | 0                                  | 0.16             | 0.0                | Α                | -                                  | 0                                  |  |  |
| Dr                        | School Dr WB-LR       | 0.05             | 9.8                | Α                | -                                  | 4                                  | 0.06             | 10.0               | Α                | -                                  | 5                                  |  |  |

<sup>&</sup>lt;sup>1</sup> Volume to Capacity Ratio; <sup>2</sup> Vehicle Delay, measured in seconds; <sup>3</sup> Level Of Service; <sup>4</sup> 50<sup>th</sup> Percentile Queue (in feet); <sup>5</sup> 95th Percentile Queue (in feet) based upon 22 feet per vehicle; \* = Defacto Left Lane; # = volume exceeds capacity, queue may be longer; m = 95th percentile queue is metered by upstream signal; ~ = Volume exceeds capacity, queue is theoretically infinite

### 7.9 Parking

The School parking lot, when complete, will provide 116 striped parking spaces for Option A (248 striped parking spaces for Option B) that include 5 accessible spaces (7 accessible spaces for Option B). Based on existing parking utilization, approximately 15 spaces for visitors are planned which may be available for parental parking (40 stationary spaces for visitors are planned for Option B). This number exceeds the number of parking spaces required by the Institute of Transportation Engineers (ITE) Parking Generation for land code 520 to facilitate parental parking during drop-off and pick-up times (see Table 14). The curb at the car loop is approximately 1440 linear feet, which can accommodate an additional 72 vehicles. Option B has two drop-off areas: the Grade 1-5 car loop snakes around behind the school and is approximately 1600 linear feet, which can accommodate 80 vehicles; and PK-K drop-off curb in front of the school is approximately 290 linear feet, which can accommodate 15 vehicles.

**Table 14 - Proposed Parking Summary** 

| Option | Parking Spaces<br>Provided    | Parking Spaces Required by Institute of Transportation Engineers' Parking Generation for Land Use Code 520 |
|--------|-------------------------------|------------------------------------------------------------------------------------------------------------|
| A      | 116 Striped<br>(5 Accessible) | 95                                                                                                         |
| ^      | 72 Live Drop-Off              | 93                                                                                                         |
| В      | 248 Striped<br>(7 Accessible) | 189                                                                                                        |
| В      | 95 Live Drop-Off              | 109                                                                                                        |

#### 8 CONCLUSIONS AND RECOMMENDATIONS

#### 8.1 Conclusions

Nitsch Engineering has been retained by Dore & Whittier Architects to prepare a qualitative assessment of safety, traffic circulation, and traffic access/egress, associated with the feasibility study and schematic design for the proposed Balmer Elementary School reconstruction project located in Northbridge, Massachusetts.

The Project includes construction of a new Balmer Elementary School building and grounds on the site of the existing school, located at 21 Crescent St in Northbridge.

The following four (4) potential options are being considered:

- 5. B2, Grades 2-4, New Construction at the Rear of the Site (510 enrollment);
- 6. C2, Addition/Renovation of the existing Balmer School, keeping the Academic Wing (1,030 enrollment K-5, plus 80 PK, 1,110 total);
- 7. C3, Grades PK-5, New Construction at the Rear of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total); and
- 8. C5, Grades PK-5, New Construction, Front of the Site (1,030 enrollment K-5, plus 80 PK, 1,110 total).

The evaluation was based on the two (2) enrollment options of 510 and 1,110 students, because all four (4) options have identical access and egress points.

The new school (regardless of the option) will continue to be accessed from Crescent Street using two driveways. The access and egress to the school (parental drop-off and pick-up, as well as teachers and staff) will occur from the new driveway opposite Lake Street to the circular driveway at the new main entrance. The existing school driveway will also be used for pre-kindergarten parental drop-off and pick-up as well as access to the parking lots.

The bus and delivery traffic will arrive through the new driveway opposite Lake Street. The bus drop-off/pick-up will occur at the designated bus lane located south of the school.

A new one-way driveway will also allow vehicular egress to North Main Street.

New Balmer Elementary School with 510 Enrollment Option (Option A)

We examined the future conditions, as well as site circulation with respect to the projected student drop-off and pick-up at the new Balmer Elementary School. This option is not expected to increase traffic volumes at the School and adjacent streets during the weekday morning drop-off and weekday afternoon pick-up, but it will redistribute the existing traffic because of the new driveways providing additional access and egress to the school. The parking lot will contain 116 spaces, of which approximately 15 spaces may be available for parental parking, based on existing parking utilization. The curb at the car loop is approximately 1440 linear feet, which can accommodate an additional 72 vehicles.

New Balmer Elementary School with 1110 Enrollment Option (Option B)

We examined the future conditions, as well as site circulation with respect to the projected student drop-off and pick-up at the new Balmer Elementary School. This option would result in a doubling of traffic volumes at the school during the weekday morning drop-off and weekday afternoon pick-up, totaling approximately 222 trips

(130 entering and 92 exiting) during the weekday morning drop-off, and approximately 185 trips (81 entering and 104 exiting) during the weekday afternoon pick-up. The parking lot will contain 248 spaces, of which approximately 40 spaces may be available for parental parking, based on existing parking utilization. The curbs at the car loops combined can accommodate an additional 95 vehicles.

At the request of Dore & Whittier Architects, Nitsch ran two scenarios to test the effectiveness of the proposed N Main driveway on overall site traffic efficiency: one model with the drive, and one without. On the model with the driveway, the maximum time delay at the two other exits from the site (onto Crescent Street) was approximately 11 seconds with a queue length of 16 feet (approximately one car length). Without the driveway, the time delay remains approximately 11 seconds, however the queue length increases to 20 feet (approximately two car lengths). This analysis shows that the effect of the proposed third drive on the function of the other two intersections is almost negligible, and the modeled results are certainly within reasonable level-of-service parameters for the two Crescent Street access drives.

Under either scenario, the one existing and two proposed new access drives have sight distances within safe guidelines.

#### 8.2 Recommendations

Based on the proposed options for reconstruction of Balmer Elementary School, Nitsch Engineering offers the following recommendations regardless of the chosen option:

- Continue designating Crescent Street as a School Zone under State and local statute, and install the appropriate School Zone signs.
- The sidewalks and accessible ramps along Crescent Street are in acceptable condition. However, pedestrian experience along Crescent Street should be enhanced by improvements to the pedestrian and student crossing signage, and providing advanced warning signing of school entering and exiting traffic.
- Enhance the pedestrian experience along Lake and Arcade Streets by considering improvements to the sidewalks and accessible ramps where needed to accommodate safe walks to school, and providing advanced warning signing of school entering and exiting traffic.
- Reach out to parents via social media to increase safety awareness.



# W. EDWARD BALMER ELEMENTARY SCHOOL

D&W PROJECT # 17-759

# 21 CRESCENT STREET WHITINSVILLE, MA 01588

# OWNER

TOWN OF NORTHBRIDGE 87 LINWOOD AVENUE WHITINSVILLE, MA 01588 P: 508.234.8156

# OWNER PROJECT MANAGER

SYMMES MAINI & MCKEE ASSOCIATES 1000 MASSACHUSETTS AVENUE CAMBRIDGE, MA 02138 P: 617 520 9403

# ARCHITECT

F: 802.863.6955

DORE & WHITTIER ARCHITECTS, INC. 212 BATTERY STREET BURLINGTON, VT 05401 P: 802.863.1428

260 MERRIMAC STREET BUILDING 7, 2nd FLOOR NEWBURYPORT, MA 01950 P: 978.499.2999 F: 978.499.2944

# CIVIL CONSULTANT

NITSCH ENGINEERING, INC. 2 CENTER STREET, SUITE 430 BOSTON, MA 02108 P: 617.338.0063 F: 617.338.6472

## FOOD SERVICE CONSULTANT

CRABTREE McGRATH ASSOCIATES 161 WEST MAIN STREET GEORGETOWN, MA 01833 P: 978.352.8500

# F: 978.352.8588 LANDSCAPE CONSULTANT

HORIUCHI SOLIEN LANDSCAPE ARCHITECTS

200 MAIN STREET FALMOUTH, MA 02450 P: 978.540.5320

# MECHANICAL / ELECTRICAL CONSULTANT

GARCIA GALUSKA DeSOUSA, INC. 370 FAUNCE CORNER ROAD DARTMOUTH, MA 01747-1217 P: 508.998.5700 F: 508.998.0883

# PLUMBING & FIRE PROTECTION CONSULTANT

VAV INTERNATIONAL 400 CUMMINGS PARK DRIVE #4700 WOBURN, MA 01801 P: 781.935.7228

# STRUCTURAL CONSULTANT ENGINEERS DESIGN GROUP, INC.

350 MAIN ST., FLOOR 2 MALDEN, MA 02148 P: 781.396.9007 F: 781.396.9008

# TECHNOLOGY CONSULTANT

EDVANCE TECHNOLOGY 300 BRICKSTONE SQUARE, SUITE 201 ANDOVER, MA 01810 P: 978.256.9900 F: 978.560.1771

# ACOUSTICAL CONSULTANT

ACENTECH 33 MOULTON STREET CAMBRIDGE, MA 02138 P: 617.499.8000 F: 617.499.8074

# SUSTAINABLE DESIGN CONSULTANT

THE GREEN ENGINEER INC. 54 JUNCTION SQUARE DRIVE CONCORD, MA 01742 P: 978.369.8978 F: 781.240.8003

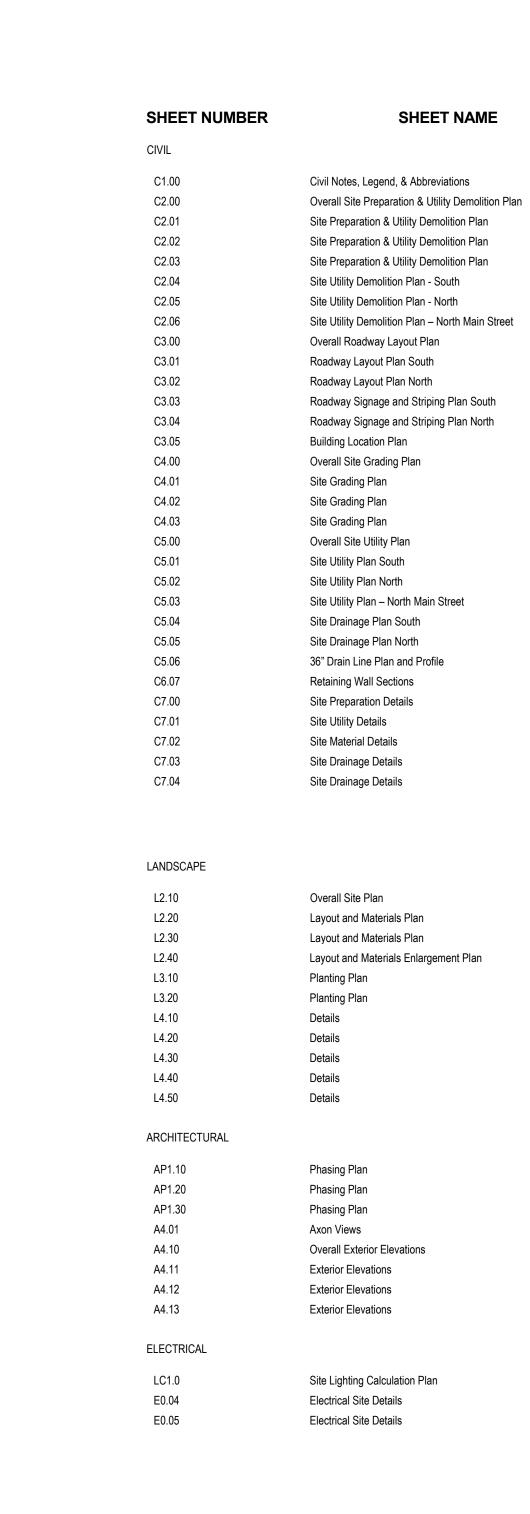
F: 508.628.5488

# HAZARDOUS MATERIALS

UNIVERSAL ENVIRONMENTAL CONSULTANTS
12 BREWSTER ROAD
FRAMINGHAM, MA 01702
P: 508.628.5486

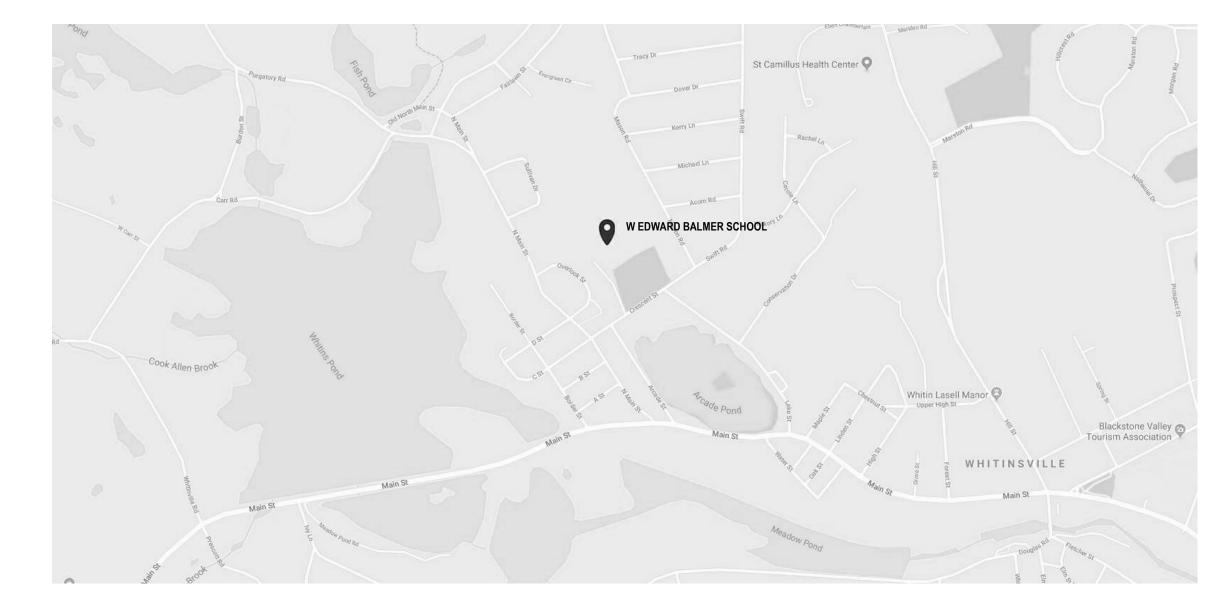
## COST ESTIMATING

PM&C 20 DOWNER AVENUE SUITE 1C HINGHAM, MA 02043 P: 781.740.8007 F: 781.740.1012


F: 978.330.5056

# GEOTECHNICAL CONSULTANT

LAHLAF GEOTECHNICAL CONSULTING, INC. (LGCI)
23 MCGINNESS WAY
BILLERICA, MA 01821
P: 978 330 5912


# ENVIRONMENTAL CONSULTANT

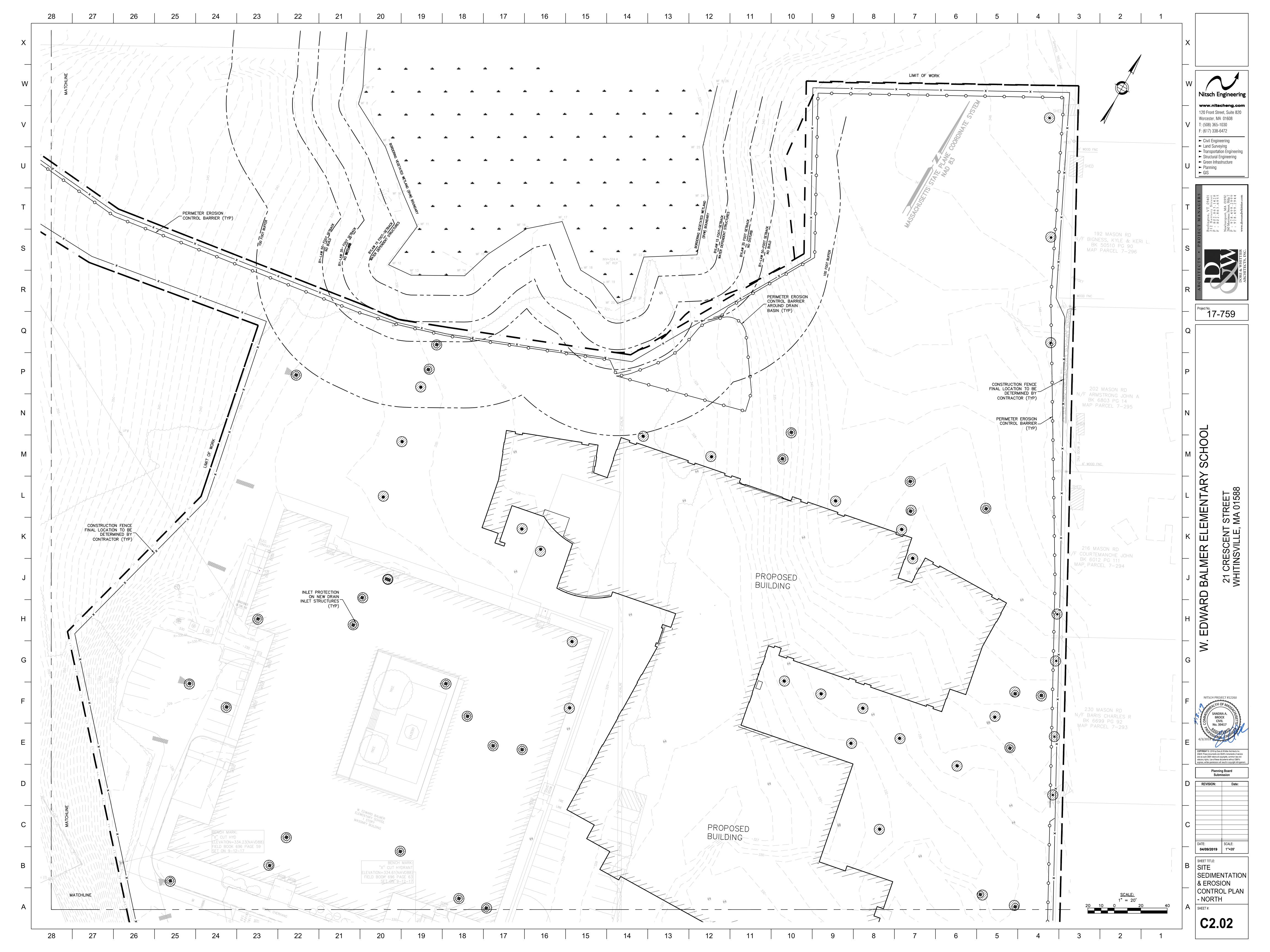
FS ENGINEERS, INC. 2 CLOCK TOWER PLACE, SUITE 630 MAYNARD, MA 01754 P: 978.298.5956 F: 978.298.5104





# LOCATION MAP




| DEMOLITION NOTES:  1. SITE PREPARATION AND DEMOLITION SHALL INCLUDE THOSE AREAS WITHIN THE LIMIT OF WORK LINE AS                                                                                                                                                                                                                                                                                                                                    | GENERAL NOTES:  1. TOPOGRAPHIC DATA, PROPERTY LINE INFORMATION, AND EXISTING SITE FEATURES WERE OBTAINED FROM                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED LEGEND                                                                                                        | ABBREVIATIONS AB ACCESS BASIN                                                                                    |                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| SHOWN ON THE CONTRACT DOCUMENTS.  2. ANY AREA OUTSIDE THE LIMIT OF WORK THAT IS DISTURBED SHALL BE RESTORED TO ITS ORIGINAL CONDITION AT NO ADDITIONAL COST TO THE OWNER.                                                                                                                                                                                                                                                                           | A PLAN ENTITLED "COMPILED EXISTING CONDITIONS", PREPARED BY NITSCH ENGINEERING., DATED SEPTEMBER 29, 2017.  2. FLOODPLAIN INFORMATION WAS OBTAINED FROM THE FLOOD INSURANCE RATE MAP (FIRM)                                                                                                                                                                                                                                                                                                                               | LIMIT OF WORK  EXISTING UTILITY TO BE ABANDONED, REMOVED AND DISPOSED IF IN CONFLICT WITH NEW SITE IMPROVEMENTS, OR AS | AD AREA DRAIN  BC BOTTOM OF CURB ELEVATION  T CB CATCH BASIN                                                     |                                                                                                                                |
| 3. CONSULT ALL OF THE DRAWINGS AND SPECIFICATIONS FOR COORDINATION REQUIREMENTS BEFORE COMMENCING DEMOLITION.                                                                                                                                                                                                                                                                                                                                       | NO.25027C1006E DATED 7/11/2011. THE SITE IS IN ZONE X AREA OF MINIMAL FLOOD RISK.  3. THE CONTRACTOR SHALL COMPLY WITH MASSACHUSETTS GENERAL LAWS CHAPTER 82, SECTION 40, AS AMENDED, WHICH STATES THAT NO ONE MAY EXCAVATE IN THE COMMONWEALTH OF MASSACHUSETTS                                                                                                                                                                                                                                                          | indicated on drawings                                                                                                  | CCB CAPE COD BERM CI CAST IRON CL CENTER LINE                                                                    | W Nitsch Enginee                                                                                                               |
| <ul> <li>4. THE CONTRACTOR SHALL COORDINATE SITE DEMOLITION EFFORTS WITH ALL TRADES THAT MAY BE AFFECTED BY THE WORK.</li> <li>5. ALL ITEMS REQUIRING REMOVAL SHALL BE REMOVED TO FULL DEPTH TO INCLUDE BASE MATERIAL AND FOOTINGS OR FOUNDATIONS AS REQUIRED TO FACILITATE CONSTRUCTION, AND LEGALLY DISPOSED OF OFF-SITE BY CONTRACTOR.</li> </ul>                                                                                                | EXCEPT IN AN EMERGENCY WITHOUT 72 HOURS NOTICE, EXCLUSIVE OF SATURDAYS, SUNDAYS, AND LEGAL HOLIDAYS, TO NATURAL GAS PIPELINE COMPANIES, AND MUNICIPAL UTILITY DEPARTMENTS THAT SUPPLY GAS, ELECTRICITY, TELEPHONE, OR CABLE TELEVISION SERVICE IN OR TO THE CITY OR TOWN WHERE THE EXCAVATION IS TO BE MADE. THE CONTRACTOR SHALL CALL "DIG SAFE" AT 1-888-DIG-SAFE.                                                                                                                                                      | DOMESTIC WATER PIPE  FIRE PROTECTION PIPE  SANITARY SEWER PIPE                                                         | CO CLEANOUT  COP CENTER OF PIPE  CPP CORRUGATED POLYETHYLENE PIPE  DCB DOUBLE CATCH BASIN                        | www.nitscheng. 120 Front Street, Suite Worcester, MA 01608  T: (508) 365-1030                                                  |
| 6. UTILITY PIPES DESIGNATED TO BE ABANDONED IN PLACE SHALL BE PLUGGED AT THEIR ENDS WITH WATERTIGHT BRICK MASONRY OR CEMENT MORTAR WITH A MINIMUM THICKNESS OF 8 INCHES.                                                                                                                                                                                                                                                                            | 4. THE CONTRACTOR SHALL COMPLY WITH MASSACHUSETTS GENERAL LAWS CHAPTER 82A, ALSO<br>REFERRED TO AS JACKIE'S LAW, AS DETAILED IN SECTION 520 CMR 14.00 OF THE CODE OF<br>MASSACHUSETTS REGULATIONS.                                                                                                                                                                                                                                                                                                                        | STORM DRAIN PIPE  G GAS PIPE  ELECTRIC DUCTBANK                                                                        | DI DUCTILE IRON PIPE CEMENT LINED DMH DRAIN MANHOLE                                                              | F: (617) 338-6472  Civil Engineering                                                                                           |
| 7. UTILITY PIPES DESIGNATED TO BE REMOVED SHALL CONSIST OF THE COMPLETE REMOVAL AND DISPOSAL<br>OF THE ENTIRE LENGTH OF PIPE AND BACKFILL AND 95% COMPACTION OF THE VOID WITH ORDINARY<br>BORROW. WHEN THE VOID IS WITHIN THE FOOTPRINT OF THE NEW BUILDING, GRAVEL BORROW SHALL BE<br>USED TO BACKFILL THE VOID.                                                                                                                                   | <ul><li>5. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL LAWS, RULES, REGULATIONS AND SAFETY CODES IN THE CONSTRUCTION OF ALL IMPROVEMENTS.</li><li>6. THE LOCATIONS AND ELEVATIONS OF ALL EXISTING UTILITIES ARE APPROXIMATE AND AND ALL UTILITIES</li></ul>                                                                                                                                                                                                                                 | T/C TELECOM DUCTBANK  INLET PROTECTION                                                                                 | EHH ELECTRIC HANDHOLE  EJ EXPANSION JOINT  EMH ELECTRIC MANHOLE                                                  | <ul> <li>Land Surveying</li> <li>Transportation Engine</li> <li>Structural Engineerin</li> <li>Green Infrastructure</li> </ul> |
| 8. UTILITY STRUCTURES DESIGNATED TO BE ABANDONED IN PLACE SHALL HAVE THEIR CAST IRON CASTINGS REMOVED AND DISPOSED, INLET AND OUTLET PIPES PLUGGED, THE BOTTOM OF THE STRUCTURES SHALL BE BROKEN, THE VOID OF THE STRUCTURES SHALL BE BACKFILLED AND COMPACTED TO 95% WITH ORDINARY BORROW OR FLOWABLE FILL, AND THE TOP OF THE STRUCTURE SHALL BE REMOVED SO THAT IT IS AT LEAST 36 INCHES BELOW FINISH GRADE.                                     | MAY NOT BE SHOWN. PRESENCE AND LOCATIONS OF ALL UTILITIES WITHIN THE LIMIT OF WORK MUST BE DETERMINED BY THE CONTRACTOR PRIOR TO COMMENCEMENT OF CONSTRUCTION ACTIVITY. THE CONTRACTOR SHALL BE RESPONSIBLE FOR IDENTIFYING AND CONTACTING THE CONTROLLING AUTHORITIES AND/OR UTILITY COMPANIES RELATIVE TO THE LOCATIONS AND ELEVATIONS OF THEIR LINES. THE CONTRACTOR SHALL KEEP A RECORD OF ANY DISCREPANCIES OR CHANGES IN THE LOCATIONS OF ANY UTILITIES SHOWN OR ENCOUNTERED DURING CONSTRUCTION. ANY DISCREPANCIES | ELEVATION CONTOURS  MATCH LINE  CENTERLINE                                                                             | FD FOUNDATION DRAIN  FFE FINISHED FLOOR ELEVATION  HP HIGH POINT  HYD FIRE HYDRANT  INV INVERT ELEVATION         | Planning ► GIS                                                                                                                 |
| 9. UTILITY STRUCTURES DESIGNATED TO BE REMOVED SHALL CONSIST OF THE REMOVAL AND DISPOSAL OF CAST IRON CASTINGS, PLUGGING OF INLET AND OUTLET PIPES, REMOVAL OF THE STRUCTURE, AND BACKFILL AND 95% COMPACTION OF THE VOID WITH ORDINARY BORROW. WHEN HE VOID IS WITHIN THE FOOTPRINT OF THE NEW BUILDING, GRAVEL BORROW SHALL BE USED TO BACKFILL THE VOID.                                                                                         | SHALL BE REPORTED TO THE OWNER AND NITSCH ENGINEERING. ANY DAMAGE RESULTING FROM THE FAILURE OF THE CONTRACTOR TO MAKE THESE DETERMINATIONS AND CONTACTS SHALL BE BORNE BY THE CONTRACTOR.  7. THE CONTRACTOR SHALL, THROUGHOUT CONSTRUCTION, TAKE ADEQUATE PRECAUTIONS TO PROTECT                                                                                                                                                                                                                                        | CO ● CLEANOUT  AD ● ■ AREA DRAIN  AB ● ■ ACCESS BASIN                                                                  | LF LINEAR FEET  LOW LIMIT OF WORK  LP LOW POINT                                                                  | L NAGERS  .VT 05401 ery Street 863.1428 863.6955 rt, MA 01950 cStreet, Bldg7 499.2999                                          |
| <ul> <li>10. ALL DEBRIS GENERATED DURING SITE PREPARATION ACTIVITIES SHALL BE LEGALLY DISPOSED OF OFF SITE.</li> <li>11. AT ALL LOCATIONS WHERE EXISTING CURBING, CONCRETE PAVEMENT OR BITUMINOUS CONCRETE ROADWAY ABUTS NEW CONSTRUCTION, THE EDGE OF THE EXISTING CURB OR PAVEMENT SHALL BE SAW CUT TO A CLEAN, SMOOTH EDGE.</li> </ul>                                                                                                           | ALL WALKS, GRADING, SIDEWALKS AND SITE DETAILS OUTSIDE OF THE LIMIT OF WORK AS DEFINED ON THE DRAWINGS AND SHALL REPAIR AND REPLACE OR OTHERWISE MAKE GOOD AS DIRECTED BY THE ENGINEER OR OWNER'S DESIGNATED REPRESENTATIVE ANY SUCH OR OTHER DAMAGE SO CAUSED.  8. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR JOB SITE SAFETY AND ALL CONSTRUCTION                                                                                                                                                                   | DMH DRAIN MANHOLE  WQS Q WATER QUALITY STRUCTURE  CATCH BASIN                                                          | LW LAB WASTE  M&P MAINTAIN AND PROTECT  NIC NOT IN CONTRACT                                                      | Burlington 212 Batt P: 802. F: 802. Newburypor 260 Merrima P: 9 7 8.                                                           |
| 12. EXTEND DESIGNATED LIMIT OF WORK AS NECESSARY TO ACCOMPLISH ROUGH GRADING, EROSION CONTROL, TREE PROTECTION, AND SITE WORK AS REQUIRED BY THESE DRAWINGS AND SPECIFICATIONS.                                                                                                                                                                                                                                                                     | MEANS AND METHODS.  9. PRIOR TO BEGINNING CONSTRUCTION, THE CONTRACTOR SHALL BECOME FAMILIAR WITH THE SITE AND CONSTRUCTION DOCUMENTS TO DEVELOP A THOROUGH UNDERSTANDING OF THE PROJECT, INCLUDING                                                                                                                                                                                                                                                                                                                       | CB CATCH BASIN  DCB DOUBLE CATCH BASIN                                                                                 | OC ON CENTER OCS OUTLET CONTROL STRUCTURE PD PERIMETER DRAIN                                                     | S OBBO                                                                                                                         |
| 13. THE CONTRACTOR SHALL REMOVE FROM THE SITE ALL RUBBISH AND DEBRIS FOUND THEREON. STORAGE OF SUCH MATERIALS ON THE PROJECT SITE WILL NOT BE PERMITTED. THE CONTRACTOR SHALL LEAVE THE SITE IN SAFE, CLEAN, AND LEVEL CONDITION UPON COMPLETION OF THE SITE DEMOLITION WORK.                                                                                                                                                                       | ANY SPECIAL CONDITIONS AND CONSTRAINTS.  10. IT IS THE CONTRACTOR'S RESPONSIBILITY TO BECOME FAMILIAR WITH THE PROJECT SITE AND TO VERIFY ALL CONDITIONS IN THE FIELD AND REPORT DISCREPANCIES BETWEEN PLANS AND ACTUAL                                                                                                                                                                                                                                                                                                   | WQI(III) WATER QUALITY INLET  SMH SEWER MANHOLE                                                                        | PERF PERFORATED  PVC POLYVINYL CHLORIDE PIPE  R&D REMOVE AND DISPOSE                                             | TECTS                                                                                                                          |
| 14. REMOVE AND STOCKPILE ALL EXISTING SITE LIGHTS, BENCHES, TRASH RECEPTACLES, TRAFFIC SIGNS, GRANITE CURB, AND OTHER SITE IMPROVEMENTS WITHIN LIMIT OF WORK LINE UNLESS OTHERWISE NOTED.  15. ALL EXISTING TREES AND SHRUBS TO REMAIN SHALL BE PROTECTED AND MAINTAINED THROUGHOUT THE                                                                                                                                                             | CONDITIONS TO THE OWNER OR OWNER'S REPRESENTATION IMMEDIATELY.  11. THE CONTRACTOR SHALL CONDUCT ALL NECESSARY CONSTRUCTION NOTIFICATIONS AND APPLY FOR AND OBTAIN ALL NECESSARY CONSTRUCTION PERMITS.                                                                                                                                                                                                                                                                                                                    | TMH TELECOM MANHOLE  EMH ELECTRIC MANHOLE                                                                              | R&S REMOVE AND STOCKPILE<br>RD ROOF DRAIN                                                                        | R ARCHI                                                                                                                        |
| TIME OF CONSTRUCTION, AS SPECIFIED AND DIRECTED BY THE LANDSCAPE ARCHITECT.  16. BEFORE ANY TREES OR SHRUBS ARE REMOVED, THE CONTRACTOR SHALL ARRANGE A CONFERENCE ON THE SITE WITH THE OWNER OR OWNER'S REPRESENTATIVE TO IDENTIFY TREES AND SHRUBS THAT ARE TO BE DEPOTED TO BE DESCRIBED.                                                                                                                                                        | 12. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR THE ESTABLISHMENT AND USE OF ALL VERTICAL AND HORIZONTAL CONSTRUCTION CONTROLS.                                                                                                                                                                                                                                                                                                                                                                                              | WV ► WATER VALVE  HYD ❤ FIRE HYDRANT                                                                                   | RIM RIM ELEVATION SMH SEWER MANHOLE SS SEWER SERVICE                                                             | Project No.                                                                                                                    |
| BE REMOVED, AS WELL AS THOSE WHICH ARE TO BE PROTECTED. DO NOT COMMENCE CLEARING OPERATIONS WITHOUT A CLEAR UNDERSTANDING OF EXISTING CONDITIONS TO BE PRESERVED.  17. THE CONTRACTOR SHALL REMOVE FROM THE AREA OF CONSTRUCTION PAVEMENT, CONCRETE, CURBING, POLES AND FOUNDATIONS, ISLANDS, TREE BERMS AND OTHER FEATURES WITHIN THE LIMITS OF CONSTRUCTION AS REQUIRED TO ACCOMMODATE NEW CONSTRUCTION WHETHER SPECIFIED ON THE DRAWINGS OR NOT. | <ol> <li>ELEVATIONS REFER TO NAVD88 GEOID 12A VERTICAL BASED ON GPS RTK OBSERVATIONS.</li> <li>THE CONTRACTOR SHALL COMPLY WITH THE ORDER OF CONDITIONS DATED XXXX XX, XXXX AND ISSUED BY THE XXXX CONSERVATION COMMISSION (DEP #XXX-XXX).</li> <li>FOR SOIL INFORMATION REFER TO GEOTECHNICAL REPORT.</li> </ol>                                                                                                                                                                                                         |                                                                                                                        | TC TOP OF CURB ELEVATION  THH TELECOM HANDHOLE  TMH TELECOM MANHOLE  TOP TOP OF PIPE                             | Q 17-759                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        | TOD TOP OF DUCT BANK  TYP TYPICAL  UD UNDERDRAIN                                                                 |                                                                                                                                |
| EARTH MOVING AND GRADING NOTES:  1. ALL TOPSOIL ENCOUNTERED WITHIN THE WORK AREA SHALL BE STRIPPED TO ITS FULL DEPTH AND STOCKPILED FOR REUSE. EXCESS TOPSOIL SHALL BE REMOVED FROM THE SITE UNLESS OTHERWISE                                                                                                                                                                                                                                       | EROSION AND SEDIMENT CONTROL NOTES:  1. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH THE LATEST EDITION OF THE "MASSACHUSETTS EROSION AND SEDIMENT CONTROL GUIDELINES FOR URBAN AND SUBURBAN AREAS" PREPARED BY DEPARTMENT OF ENVIRONMENTAL                                                                                                                                                                                                                           |                                                                                                                        | USD UNDERSLAB DRAIN VGC VERTICAL GRANITE CURB WQI WATER QUALITY INLET WQS WATER QUALITY STRUCTURE WV WATER VALVE | Р                                                                                                                              |
| DIRECTED BY THE OWNER. TOPSOIL PILES SHALL REMAIN SEGREGATED FROM EXCAVATED SUBSURFACE SOIL MATERIALS.  2. GRADES WITHIN HANDICAP PARKING SPACES AND ACCESS AISLES SHALL NOT EXCEED 1.5% IN ANY DIRECTION.                                                                                                                                                                                                                                          | PROTECTION, BUREAU OF RESOURCE PROTECTION, AND THE CURRENT NPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES.  2. MEANS OF EROSION AND SEDIMENT PROTECTION AS NOTED ON THE DRAWINGS INDICATE MINIMUM RECOMMENDED PROVISIONS. THE CONTRACTOR IS RESPONSIBLE FOR FINAL SELECTION AND PLACEMENT                                                                                                                                                                                                    |                                                                                                                        | WV WATER VALVE                                                                                                   |                                                                                                                                |
| <ol> <li>CROSS SLOPES OF ALL PEDESTRIAN WALKS SHALL NOT EXCEED 1.5%.</li> <li>RUNNING SLOPE OF ALL PEDESTRIAN WALKS SHALL NOT EXCEED 4.5%, UNLESS OTHERWISE NOTED.</li> </ol>                                                                                                                                                                                                                                                                       | OF EROSION AND SEDIMENTATION CONTROLS BASED ON ACTUAL SITE CONDITIONS AND CONSTRUCTION CONDITIONS. ADDITIONAL MEANS OF PROTECTION SHALL BE PROVIDED BY THE CONTRACTOR AS REQUIRED FOR CONTINUED OR UNFORESEEN EROSION PROBLEMS, OR AS DIRECTED BY CONTROLLING MUNICIPAL AUTHORITIES, AT NO ADDITIONAL EXPENSE TO THE OWNER.                                                                                                                                                                                               |                                                                                                                        |                                                                                                                  | N J                                                                                                                            |
| <ul><li>5. THE CONTRACTOR SHALL EXERCISE CAUTION IN ALL EXCAVATION ACTIVITY DUE TO POSSIBLE EXISTENCE OF UNRECORDED UTILITY LINES.</li><li>6. ALL PAVED AREAS MUST PITCH TO DRAIN AT A MINIMUM OF 1% UNLESS OTHERWISE NOTED.</li></ul>                                                                                                                                                                                                              | 3. AN EROSION CONTROL BARRIER SHALL BE INSTALLED ALONG THE EDGE OF PROPOSED DEVELOPMENT AS INDICATED IN THE PLAN PRIOR TO COMMENCEMENT OF DEMOLITION OR CONSTRUCTION OPERATIONS.  4. SEDIMENT CONTROL MEASURES SHALL BE ADJUSTED TO MEET FIELD CONDITIONS AT THE TIME OF AND DEPLOY AND THE PLANE OF CONSTRUCTED PRIOR TO AND MATERIALES AFTER ANY                                                                                                                                                                        |                                                                                                                        |                                                                                                                  | -   <u>Q</u>                                                                                                                   |
| <ol> <li>PROVIDE POSITIVE DRAINAGE AWAY FROM FACE OF BUILDINGS AT ALL LOCATIONS.</li> <li>PITCH EVENLY BETWEEN CONTOUR LINES AND BETWEEN SPOT GRADES. SPOT GRADE ELEVATIONS TAKE PRECEDENCE OVER CONTOUR LINES.</li> </ol>                                                                                                                                                                                                                          | DURING ALL PHASES OF CONSTRUCTION AND BE CONSTRUCTED PRIOR TO AND IMMEDIATELY AFTER ANY GRADING OR DISTURBANCE OF EXISTING SURFACE MATERIAL ON THE SITE.  5. AFTER ANY SIGNIFICANT RAINFALL (GREATER THAN 0.25 INCH OF RAINFALL WITHIN 24 HOURS), SEDIMENT CONTROL STRUCTURES SHALL BE INSPECTED FOR INTEGRITY. ANY DAMAGE SHALL BE                                                                                                                                                                                       |                                                                                                                        |                                                                                                                  | SC M                                                                                                                           |
| <ol> <li>ALL PROPOSED TOP OF CURB ELEVATIONS ARE SIX INCHES (6") ABOVE BOTTOM OF CURB ELEVATIONS<br/>UNLESS OTHERWISE NOTED. ALL PROPOSED TOP OF CAPE COD BERM ELEVATIONS ARE FOUR INCHES<br/>(4") ABOVE BOTTOM OF CURB ELEVATION UNLESS OTHERWISE NOTED.</li> </ol>                                                                                                                                                                                | CORRECTED IMMEDIATELY.  6. PERIODIC INSPECTION AND MAINTENANCE OF ALL SEDIMENT CONTROL STRUCTURES SHALL BE PROVIDED TO ENSURE THAT THE INTENDED PURPOSE IS ACCOMPLISHED. THE CONTRACTOR SHALL BE                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                  | -   <del>X</del>                                                                                                               |
| <ul><li>10. THE CONTRACTOR SHALL BLEND NEW GRADING SMOOTHLY INTO EXISTING GRADING AT LIMITS OF GRADING.</li><li>11. WHERE NEW PAVING MEETS EXISTING PAVING, MEET LINE AND GRADE OF EXISTING PAVING WITH SMOOTH</li></ul>                                                                                                                                                                                                                            | RESPONSIBLE FOR ALL SEDIMENT LEAVING THE LIMIT OF WORK. SEDIMENT CONTROL MEASURES SHALL BE IN WORKING CONDITION AT THE END OF EACH WORKING DAY.  7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PREVENTING SEDIMENT FROM ENTERING ANY STORM DRAINAGE SYSTEM AND FROM BEING CONVEYED TO ANY WETLAND RESOURCE AREA, PUBLIC WAYS,                                                                                                                                                                                                |                                                                                                                        |                                                                                                                  | ENT/                                                                                                                           |
| TRANSITION BETWEEN EXISTING AND NEW SURFACES.  12. THE CONTRACTOR SHALL VERIFY EXISTING GRADES IN THE FIELD AND REPORT ANY DISCREPANCIES IMMEDIATELY TO THE ARCHITECT OR OWNER'S REPRESENTATIVE PRIOR TO STARTING WORK.  13. PITCH TOPS OF ALL WALLS AT ONE—EIGHTH INCH (1/8") PER FOOT FROM BACK OF WALL TO FACE OF                                                                                                                                | ABUTTING PROPERTY, OR OUTSIDE OF THE PROJECT LIMITS.  8. THE CONTRACTOR SHALL PROTECT ALL DRAINAGE SWALES AND GROUND SURFACES WITHIN THE LIMIT OF WORK SHALL FROM EROSIVE CONDITIONS. STRAW BALE, CRUSHED STONE OR EQUIVALENT CHECK DAMS ARE TO BE PROVIDED AT A MAXIMUM OF TWO HUNDRED (200) FOOT SPACING, OR LESS AS SITE—SPECIFIC CONDITIONS WARRANT, WITHIN ALL DRAINAGE SWALES AND DITCHES AND AT UPSTREAM                                                                                                           |                                                                                                                        |                                                                                                                  | ILEME                                                                                                                          |
| WALL.  14. SURPLUS MATERIALS SHALL BE REMOVED FROM THE SITE UNLESS DIRECTED BY THE OWNER OR OWNER'S REPRESENTATIVE. REFER TO EARTHWORK SPECIFICATIONS.                                                                                                                                                                                                                                                                                              | SIDES OF ALL DRAINAGE INLETS.  9. ALL STOCK PILES SHALL BE PROTECTED AND LOCATED A MINIMUM OF 100' FROM EXISTING WETLAND RESOURCE AREAS & WITHIN THE LIMIT OF WORK.                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |                                                                                                                  | ESCE                                                                                                                           |
| <ul> <li>15. ANY AREAS OUTSIDE OF THE LIMIT OF WORK THAT ARE DISTURBED SHALL BE RESTORED BY THE CONTRACTOR TO THE PRE-CONSTRUCTION CONDITION/GRADE AT NO COST TO THE OWNER.</li> <li>16. EXCAVATION REQUIRED WITHIN PROXIMITY OF EXISTING UTILITY LINES SHALL BE DONE BY HAND.</li> </ul>                                                                                                                                                           | <ol> <li>ANY SEDIMENT TRACKED ONTO PAVED AREAS SHALL BE SWEPT AT THE END OF EACH WORKING DAY.</li> <li>ALL SEDIMENT RETAINED BY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE LEGALLY DISPOSED OF OFF SITE.</li> </ol>                                                                                                                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                  | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                            |
| CONTRACTOR SHALL REPAIR ANY DAMAGE TO EXISTING UTILITY LINES OR STRUCTURES INCURRED DURING CONSTRUCTION OPERATIONS AT NO ADDITIONAL COST TO COMMONWEALTH/OWNER.                                                                                                                                                                                                                                                                                     | 12. TEMPORARY DIVERSION DITCHES DIVERSION DITCHES, PERMANENT DITCHES, CHANNELS, EMBANKMENTS, AND ANY DENUDED SURFACE THAT WILL BE EXPOSED FOR A PERIOD OF 14 CALENDAR DAYS OR MORE SHALL BE CONSIDERED CRITICAL VEGETATION AREAS. THESE AREAS SHALL BE STABILIZED/PROTECTED WITH APPROPRIATE EROSION CONTROL MATTING OR OTHER EROSION CONTROL METHODS.                                                                                                                                                                    |                                                                                                                        |                                                                                                                  | RD BA                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>13. DUST SHALL BE CONTROLLED BY WATERING OR OTHER APPROVED METHODS AS DIRECTED BY THE PERMITTING AUTHORITY OR OWNER.</li> <li>14. THE CONTRACTOR SHALL USE TEMPORARY SEEDING, MULCHING OR OTHER APPROVED STABILIZATION MEASURES TO PROTECT EXPOSED AREAS DURING PROLONGED CONSTRUCTION OR OTHER LAND</li> </ul>                                                                                                                                                                                                  |                                                                                                                        |                                                                                                                  | н                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DISTURBANCE. STOCKPILES THAT WILL BE EXPOSED FOR LONGER THAN 14 DAYS SHALL BE STABILIZED.  15. THE CONTRACTOR IS RESPONSIBLE FOR REMOVAL OF ALL EROSION AND SEDIMENT CONTROLS AT THE COMPLETION OF SITE CONSTRUCTION, BUT ONLY WHEN DIRECTED BY THE CITY/TOWN OF XXXX CONSERVATION AGENT. STABILIZE OR SEED BARE AREAS LEFT AFTER EROSION CONTROL REMOVAL.                                                                                                                                                                |                                                                                                                        |                                                                                                                  | —  <br> -<br>  ЕГ                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTILITY NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                                                                  | G                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. ALL UTILITY CONNECTIONS ARE SUBJECT TO THE APPROVAL OF, AND GRANTING OF PERMITS BY, THE LOCAL MUNICIPALITY IT SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO OBTAIN ALL PERMITS AND APPROVALS RELATED TO UTILITY WORK PRIOR TO COMMENCEMENT OF CONSTRUCTION.                                                                                                                                                                                                                                                    |                                                                                                                        |                                                                                                                  |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR OBTAINING ALL PERMISSIONS FOR, AND FOR CONDUCTING ALL PREPARATIONS RELATED TO, WORK AFFECTING ANY UTILITIES WITHIN THE JURISDICTION OF ANY NON-MUNICIPAL UTILITY COMPANY, INCLUDING BUT NOT LIMITED TO ELECTRIC, TELEPHONE, AND/OR GAS. THE CONTRACTOR SHALL NOTIFY ALL APPROPRIATE AGENCIES, DEPARTMENTS, AND UTILITY                                                                                                                                                  |                                                                                                                        |                                                                                                                  | NITSCH PROJECT #1.  NITSCH PROJECT #1.  SANDRA A.  BROCK                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMPANIES, IN WRITING, AT LEAST 7 DAYS (OR PER UTILITY COMPANY REQUIREMENT) AND NOT MORE THAN 30 DAYS PRIOR TO ANY CONSTRUCTION.  3. THE CONTRACTOR SHALL MAINTAIN UTILITIES SERVICING BUILDINGS AND FACILITIES WITHIN OR OUTSIDE THE                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                  | BROCK CIVIL No. 39417                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROJECT LIMIT UNLESS THE INTERRUPTION OF SERVICE IS COORDINATED WITH THE OWNER.  4. ALL WATER, SEWER, AND DRAIN WORK SHALL BE PERFORMED ACCORDING TO THE REQUIREMENTS AND STANDARD SPECIFICATIONS OF THE LOCAL MUNICIPALITY.                                                                                                                                                                                                                                                                                              |                                                                                                                        |                                                                                                                  | COPYRIGHT © 2018 by Dore & Whittier Arr (D&W) These documents are D&W's instrum and as such D&W retains all copyrights, con    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5. GAS, TELECOMMUNICATIONS AND ELECTRIC SERVICES ARE TO BE DESIGNED BY EACH UTILITY COMPANY IN COORDINATION WITH THE MECHANICAL, ELECTRIC, AND PLUMBING CONSULTANTS.                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                  | statutory rights. Use of these documents wit<br>express, written permission will result in cop                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>6. THE CONTRACTOR SHALL COORDINATE CONSTRUCTION ACTIVITIES OF NEW UTILITIES WITH GAS, TELECOMMUNICATION AND ELECTRICAL SERVICES.</li> <li>7. INSTALL WATER LINES WITH A MINIMUM OF FIVE FEET OF COVER AND A MAXIMUM OF SEVEN FEET COVER FROM THE FINAL DESIGN GRADES.</li> </ul>                                                                                                                                                                                                                                 |                                                                                                                        |                                                                                                                  | D REVISION:                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8. MAINTAIN 10 FEET HORIZONTAL SEPARATION AND 18 INCHES VERTICAL SEPARATION (WATER OVER SEWER) BETWEEN SEWER AND WATER LINES. WHEREVER THERE IS LESS THAN 10 FEET OF HORIZONTAL SEPARATION AND 18 INCHES OF VERTICAL SEPARATION BETWEEN A PROPOSED OR EXISTING SEWER LINE TO REMAIN AND A PROPOSED OR EXISTING WATER LINE TO REMAIN BOTH WATER MAIN AND SEWER MAIN SHALL BE CONSTRUCTED OF MECHANICAL JOINT CEMENT LINED DUCTILE IRON PIPE FOR A DISTANCE OF                                                              |                                                                                                                        |                                                                                                                  |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul><li>10-FEET ON EITHER SIDE OF THE CROSSING. ONE (1) FULL LENGTH OF WATER PIPE SHALL BE CENTERED OVER THE SEWER AT THE CROSSING.</li><li>9. THE CONTRACTOR SHALL MAINTAIN ALL EXISTING UTILITIES EXCEPT THOSE NOTED TO BE ABANDONED</li></ul>                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                  | C                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND/OR REMOVED & DISPOSED.  10. THE GENERAL CONTRACTOR IS RESPONSIBLE FOR TRENCHING, BACKFILLING, AND SURFACE RESTORATION FOR GAS UTILITY SYSTEMS.                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                                                                  | DATE: SCALE: N/A                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>ALL ON SITE UTILITIES SHALL BE INSTALLED UNDERGROUND UNLESS OTHERWISE NOTED.</li> <li>ALL EXISTING AND PROPOSED MANHOLE FRAMES, COVERS, VALVES, CLEANOUTS, ETC. SHALL BE RAISED TO FINISHED GRADE PRIOR TO FINAL PAVING CONSTRUCTION.</li> </ol>                                                                                                                                                                                                                                                                 |                                                                                                                        |                                                                                                                  | B CIVIL NOTES LEGEND, & ABBREVIATION                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13. ALL GRATES IN WALKWAYS SHALL BE ADA COMPLIANT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                                                                  |                                                                                                                                |

W

1/

